|
@@ -0,0 +1,307 @@
|
|
|
|
+# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
|
|
|
|
+#
|
|
|
|
+# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
+# you may not use this file except in compliance with the License.
|
|
|
|
+# You may obtain a copy of the License at
|
|
|
|
+#
|
|
|
|
+# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
+#
|
|
|
|
+# Unless required by applicable law or agreed to in writing, software
|
|
|
|
+# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
+# See the License for the specific language governing permissions and
|
|
|
|
+# limitations under the License.
|
|
|
|
+# ==============================================================================
|
|
|
|
+
|
|
|
|
+"""Eval pre-trained 1 billion word language model.
|
|
|
|
+"""
|
|
|
|
+import os
|
|
|
|
+import sys
|
|
|
|
+
|
|
|
|
+import numpy as np
|
|
|
|
+import tensorflow as tf
|
|
|
|
+
|
|
|
|
+from google.protobuf import text_format
|
|
|
|
+import data_utils
|
|
|
|
+
|
|
|
|
+FLAGS = tf.flags.FLAGS
|
|
|
|
+# General flags.
|
|
|
|
+tf.flags.DEFINE_string('mode', 'eval',
|
|
|
|
+ 'One of [sample, eval, dump_emb, dump_lstm_emb]. '
|
|
|
|
+ '"sample" mode samples future word predictions, using '
|
|
|
|
+ 'FLAGS.prefix as prefix (prefix could be left empty). '
|
|
|
|
+ '"eval" mode calculates perplexity of the '
|
|
|
|
+ 'FLAGS.input_data. '
|
|
|
|
+ '"dump_emb" mode dumps word and softmax embeddings to '
|
|
|
|
+ 'FLAGS.save_dir. embeddings are dumped in the same '
|
|
|
|
+ 'order as words in vocabulary. All words in vocabulary '
|
|
|
|
+ 'are dumped.'
|
|
|
|
+ 'dump_lstm_emb dumps lstm embeddings of FLAGS.sentence '
|
|
|
|
+ 'to FLAGS.save_dir.')
|
|
|
|
+tf.flags.DEFINE_string('pbtxt', '',
|
|
|
|
+ 'GraphDef proto text file used to construct model '
|
|
|
|
+ 'structure.')
|
|
|
|
+tf.flags.DEFINE_string('ckpt', '',
|
|
|
|
+ 'Checkpoint directory used to fill model values.')
|
|
|
|
+tf.flags.DEFINE_string('vocab_file', '', 'Vocabulary file.')
|
|
|
|
+tf.flags.DEFINE_string('save_dir', '',
|
|
|
|
+ 'Used for "dump_emb" mode to save word embeddings.')
|
|
|
|
+# sample mode flags.
|
|
|
|
+tf.flags.DEFINE_string('prefix', '',
|
|
|
|
+ 'Used for "sample" mode to predict next words.')
|
|
|
|
+tf.flags.DEFINE_integer('max_sample_words', 100,
|
|
|
|
+ 'Sampling stops either when </S> is met or this number '
|
|
|
|
+ 'of steps has passed.')
|
|
|
|
+tf.flags.DEFINE_integer('num_samples', 3,
|
|
|
|
+ 'Number of samples to generate for the prefix.')
|
|
|
|
+# dump_lstm_emb mode flags.
|
|
|
|
+tf.flags.DEFINE_string('sentence', '',
|
|
|
|
+ 'Used as input for "dump_lstm_emb" mode.')
|
|
|
|
+# eval mode flags.
|
|
|
|
+tf.flags.DEFINE_string('input_data', '',
|
|
|
|
+ 'Input data files for eval model.')
|
|
|
|
+tf.flags.DEFINE_integer('max_eval_steps', 1000000,
|
|
|
|
+ 'Maximum mumber of steps to run "eval" mode.')
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+# For saving demo resources, use batch size 1 and step 1.
|
|
|
|
+BATCH_SIZE = 1
|
|
|
|
+NUM_TIMESTEPS = 1
|
|
|
|
+MAX_WORD_LEN = 50
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+def _LoadModel(gd_file, ckpt_file):
|
|
|
|
+ """Load the model from GraphDef and Checkpoint.
|
|
|
|
+
|
|
|
|
+ Args:
|
|
|
|
+ gd_file: GraphDef proto text file.
|
|
|
|
+ ckpt_file: TensorFlow Checkpoint file.
|
|
|
|
+
|
|
|
|
+ Returns:
|
|
|
|
+ TensorFlow session and tensors dict.
|
|
|
|
+ """
|
|
|
|
+ with tf.Graph().as_default():
|
|
|
|
+ sys.stderr.write('Recovering graph.\n')
|
|
|
|
+ with tf.gfile.FastGFile(gd_file, 'r') as f:
|
|
|
|
+ s = f.read()
|
|
|
|
+ gd = tf.GraphDef()
|
|
|
|
+ text_format.Merge(s, gd)
|
|
|
|
+
|
|
|
|
+ tf.logging.info('Recovering Graph %s', gd_file)
|
|
|
|
+ t = {}
|
|
|
|
+ [t['states_init'], t['lstm/lstm_0/control_dependency'],
|
|
|
|
+ t['lstm/lstm_1/control_dependency'], t['softmax_out'], t['class_ids_out'],
|
|
|
|
+ t['class_weights_out'], t['log_perplexity_out'], t['inputs_in'],
|
|
|
|
+ t['targets_in'], t['target_weights_in'], t['char_inputs_in'],
|
|
|
|
+ t['all_embs'], t['softmax_weights'], t['global_step']
|
|
|
|
+ ] = tf.import_graph_def(gd, {}, ['states_init',
|
|
|
|
+ 'lstm/lstm_0/control_dependency:0',
|
|
|
|
+ 'lstm/lstm_1/control_dependency:0',
|
|
|
|
+ 'softmax_out:0',
|
|
|
|
+ 'class_ids_out:0',
|
|
|
|
+ 'class_weights_out:0',
|
|
|
|
+ 'log_perplexity_out:0',
|
|
|
|
+ 'inputs_in:0',
|
|
|
|
+ 'targets_in:0',
|
|
|
|
+ 'target_weights_in:0',
|
|
|
|
+ 'char_inputs_in:0',
|
|
|
|
+ 'all_embs_out:0',
|
|
|
|
+ 'Reshape_3:0',
|
|
|
|
+ 'global_step:0'], name='')
|
|
|
|
+
|
|
|
|
+ sys.stderr.write('Recovering checkpoint %s\n' % ckpt_file)
|
|
|
|
+ sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True))
|
|
|
|
+ sess.run('save/restore_all', {'save/Const:0': ckpt_file})
|
|
|
|
+ sess.run(t['states_init'])
|
|
|
|
+
|
|
|
|
+ return sess, t
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+def _EvalModel(dataset):
|
|
|
|
+ """Evaluate model perplexity using provided dataset.
|
|
|
|
+
|
|
|
|
+ Args:
|
|
|
|
+ dataset: LM1BDataset object.
|
|
|
|
+ """
|
|
|
|
+ sess, t = _LoadModel(FLAGS.pbtxt, FLAGS.ckpt)
|
|
|
|
+
|
|
|
|
+ current_step = t['global_step'].eval(session=sess)
|
|
|
|
+ sys.stderr.write('Loaded step %d.\n' % current_step)
|
|
|
|
+
|
|
|
|
+ data_gen = dataset.get_batch(BATCH_SIZE, NUM_TIMESTEPS, forever=False)
|
|
|
|
+ sum_num = 0.0
|
|
|
|
+ sum_den = 0.0
|
|
|
|
+ perplexity = 0.0
|
|
|
|
+ for i, (inputs, char_inputs, _, targets, weights) in enumerate(data_gen):
|
|
|
|
+ input_dict = {t['inputs_in']: inputs,
|
|
|
|
+ t['targets_in']: targets,
|
|
|
|
+ t['target_weights_in']: weights}
|
|
|
|
+ if 'char_inputs_in' in t:
|
|
|
|
+ input_dict[t['char_inputs_in']] = char_inputs
|
|
|
|
+ log_perp = sess.run(t['log_perplexity_out'], feed_dict=input_dict)
|
|
|
|
+
|
|
|
|
+ if np.isnan(log_perp):
|
|
|
|
+ sys.stderr.error('log_perplexity is Nan.\n')
|
|
|
|
+ else:
|
|
|
|
+ sum_num += log_perp * weights.mean()
|
|
|
|
+ sum_den += weights.mean()
|
|
|
|
+ if sum_den > 0:
|
|
|
|
+ perplexity = np.exp(sum_num / sum_den)
|
|
|
|
+
|
|
|
|
+ sys.stderr.write('Eval Step: %d, Average Perplexity: %f.\n' %
|
|
|
|
+ (i, perplexity))
|
|
|
|
+
|
|
|
|
+ if i > FLAGS.max_eval_steps:
|
|
|
|
+ break
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+def _SampleSoftmax(softmax):
|
|
|
|
+ return min(np.sum(np.cumsum(softmax) < np.random.rand()), len(softmax) - 1)
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+def _SampleModel(prefix_words, vocab):
|
|
|
|
+ """Predict next words using the given prefix words.
|
|
|
|
+
|
|
|
|
+ Args:
|
|
|
|
+ prefix_words: Prefix words.
|
|
|
|
+ vocab: Vocabulary. Contains max word chard id length and converts between
|
|
|
|
+ words and ids.
|
|
|
|
+ """
|
|
|
|
+ targets = np.zeros([BATCH_SIZE, NUM_TIMESTEPS], np.int32)
|
|
|
|
+ weights = np.ones([BATCH_SIZE, NUM_TIMESTEPS], np.float32)
|
|
|
|
+
|
|
|
|
+ sess, t = _LoadModel(FLAGS.pbtxt, FLAGS.ckpt)
|
|
|
|
+
|
|
|
|
+ if prefix_words.find('<S>') != 0:
|
|
|
|
+ prefix_words = '<S> ' + prefix_words
|
|
|
|
+
|
|
|
|
+ prefix = [vocab.word_to_id(w) for w in prefix_words.split()]
|
|
|
|
+ prefix_char_ids = [vocab.word_to_char_ids(w) for w in prefix_words.split()]
|
|
|
|
+ for _ in xrange(FLAGS.num_samples):
|
|
|
|
+ inputs = np.zeros([BATCH_SIZE, NUM_TIMESTEPS], np.int32)
|
|
|
|
+ char_ids_inputs = np.zeros(
|
|
|
|
+ [BATCH_SIZE, NUM_TIMESTEPS, vocab.max_word_length], np.int32)
|
|
|
|
+ samples = prefix[:]
|
|
|
|
+ char_ids_samples = prefix_char_ids[:]
|
|
|
|
+ sent = ''
|
|
|
|
+ while True:
|
|
|
|
+ inputs[0, 0] = samples[0]
|
|
|
|
+ char_ids_inputs[0, 0, :] = char_ids_samples[0]
|
|
|
|
+ samples = samples[1:]
|
|
|
|
+ char_ids_samples = char_ids_samples[1:]
|
|
|
|
+
|
|
|
|
+ softmax = sess.run(t['softmax_out'],
|
|
|
|
+ feed_dict={t['char_inputs_in']: char_ids_inputs,
|
|
|
|
+ t['inputs_in']: inputs,
|
|
|
|
+ t['targets_in']: targets,
|
|
|
|
+ t['target_weights_in']: weights})
|
|
|
|
+
|
|
|
|
+ sample = _SampleSoftmax(softmax[0])
|
|
|
|
+ sample_char_ids = vocab.word_to_char_ids(vocab.id_to_word(sample))
|
|
|
|
+
|
|
|
|
+ if not samples:
|
|
|
|
+ samples = [sample]
|
|
|
|
+ char_ids_samples = [sample_char_ids]
|
|
|
|
+ sent += vocab.id_to_word(samples[0]) + ' '
|
|
|
|
+ sys.stderr.write('%s\n' % sent)
|
|
|
|
+
|
|
|
|
+ if (vocab.id_to_word(samples[0]) == '</S>' or
|
|
|
|
+ len(sent) > FLAGS.max_sample_words):
|
|
|
|
+ break
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+def _DumpEmb(vocab):
|
|
|
|
+ """Dump the softmax weights and word embeddings to files.
|
|
|
|
+
|
|
|
|
+ Args:
|
|
|
|
+ vocab: Vocabulary. Contains vocabulary size and converts word to ids.
|
|
|
|
+ """
|
|
|
|
+ assert FLAGS.save_dir, 'Must specify FLAGS.save_dir for dump_emb.'
|
|
|
|
+ inputs = np.zeros([BATCH_SIZE, NUM_TIMESTEPS], np.int32)
|
|
|
|
+ targets = np.zeros([BATCH_SIZE, NUM_TIMESTEPS], np.int32)
|
|
|
|
+ weights = np.ones([BATCH_SIZE, NUM_TIMESTEPS], np.float32)
|
|
|
|
+
|
|
|
|
+ sess, t = _LoadModel(FLAGS.pbtxt, FLAGS.ckpt)
|
|
|
|
+
|
|
|
|
+ softmax_weights = sess.run(t['softmax_weights'])
|
|
|
|
+ fname = FLAGS.save_dir + '/embeddings_softmax.npy'
|
|
|
|
+ with tf.gfile.Open(fname, mode='w') as f:
|
|
|
|
+ np.save(f, softmax_weights)
|
|
|
|
+ sys.stderr.write('Finished softmax weights\n')
|
|
|
|
+
|
|
|
|
+ all_embs = np.zeros([vocab.size, 1024])
|
|
|
|
+ for i in range(vocab.size):
|
|
|
|
+ input_dict = {t['inputs_in']: inputs,
|
|
|
|
+ t['targets_in']: targets,
|
|
|
|
+ t['target_weights_in']: weights}
|
|
|
|
+ if 'char_inputs_in' in t:
|
|
|
|
+ input_dict[t['char_inputs_in']] = (
|
|
|
|
+ vocab.word_char_ids[i].reshape([-1, 1, MAX_WORD_LEN]))
|
|
|
|
+ embs = sess.run(t['all_embs'], input_dict)
|
|
|
|
+ all_embs[i, :] = embs
|
|
|
|
+ sys.stderr.write('Finished word embedding %d/%d\n' % (i, vocab.size))
|
|
|
|
+
|
|
|
|
+ fname = FLAGS.save_dir + '/embeddings_char_cnn.npy'
|
|
|
|
+ with tf.gfile.Open(fname, mode='w') as f:
|
|
|
|
+ np.save(f, all_embs)
|
|
|
|
+ sys.stderr.write('Embedding file saved\n')
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+def _DumpSentenceEmbedding(sentence, vocab):
|
|
|
|
+ """Predict next words using the given prefix words.
|
|
|
|
+
|
|
|
|
+ Args:
|
|
|
|
+ sentence: Sentence words.
|
|
|
|
+ vocab: Vocabulary. Contains max word chard id length and converts between
|
|
|
|
+ words and ids.
|
|
|
|
+ """
|
|
|
|
+ targets = np.zeros([BATCH_SIZE, NUM_TIMESTEPS], np.int32)
|
|
|
|
+ weights = np.ones([BATCH_SIZE, NUM_TIMESTEPS], np.float32)
|
|
|
|
+
|
|
|
|
+ sess, t = _LoadModel(FLAGS.pbtxt, FLAGS.ckpt)
|
|
|
|
+
|
|
|
|
+ if sentence.find('<S>') != 0:
|
|
|
|
+ sentence = '<S> ' + sentence
|
|
|
|
+
|
|
|
|
+ word_ids = [vocab.word_to_id(w) for w in sentence.split()]
|
|
|
|
+ char_ids = [vocab.word_to_char_ids(w) for w in sentence.split()]
|
|
|
|
+
|
|
|
|
+ inputs = np.zeros([BATCH_SIZE, NUM_TIMESTEPS], np.int32)
|
|
|
|
+ char_ids_inputs = np.zeros(
|
|
|
|
+ [BATCH_SIZE, NUM_TIMESTEPS, vocab.max_word_length], np.int32)
|
|
|
|
+ for i in xrange(len(word_ids)):
|
|
|
|
+ inputs[0, 0] = word_ids[i]
|
|
|
|
+ char_ids_inputs[0, 0, :] = char_ids[i]
|
|
|
|
+
|
|
|
|
+ # Add 'lstm/lstm_0/control_dependency' if you want to dump previous layer
|
|
|
|
+ # LSTM.
|
|
|
|
+ lstm_emb = sess.run(t['lstm/lstm_1/control_dependency'],
|
|
|
|
+ feed_dict={t['char_inputs_in']: char_ids_inputs,
|
|
|
|
+ t['inputs_in']: inputs,
|
|
|
|
+ t['targets_in']: targets,
|
|
|
|
+ t['target_weights_in']: weights})
|
|
|
|
+
|
|
|
|
+ fname = os.path.join(FLAGS.save_dir, 'lstm_emb_step_%d.npy' % i)
|
|
|
|
+ with tf.gfile.Open(fname, mode='w') as f:
|
|
|
|
+ np.save(f, lstm_emb)
|
|
|
|
+ sys.stderr.write('LSTM embedding step %d file saved\n' % i)
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+def main(unused_argv):
|
|
|
|
+ vocab = data_utils.CharsVocabulary(FLAGS.vocab_file, MAX_WORD_LEN)
|
|
|
|
+
|
|
|
|
+ if FLAGS.mode == 'eval':
|
|
|
|
+ dataset = data_utils.LM1BDataset(FLAGS.input_data, vocab)
|
|
|
|
+ _EvalModel(dataset)
|
|
|
|
+ elif FLAGS.mode == 'sample':
|
|
|
|
+ _SampleModel(FLAGS.prefix, vocab)
|
|
|
|
+ elif FLAGS.mode == 'dump_emb':
|
|
|
|
+ _DumpEmb(vocab)
|
|
|
|
+ elif FLAGS.mode == 'dump_lstm_emb':
|
|
|
|
+ _DumpSentenceEmbedding(FLAGS.sentence, vocab)
|
|
|
|
+ else:
|
|
|
|
+ raise Exception('Mode not supported.')
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+if __name__ == '__main__':
|
|
|
|
+ tf.app.run()
|