|
@@ -160,10 +160,12 @@ class Seq2SeqAttentionModel(object):
|
|
|
self._next_device()):
|
|
|
cell_fw = tf.nn.rnn_cell.LSTMCell(
|
|
|
hps.num_hidden,
|
|
|
- initializer=tf.random_uniform_initializer(-0.1, 0.1, seed=123))
|
|
|
+ initializer=tf.random_uniform_initializer(-0.1, 0.1, seed=123),
|
|
|
+ state_is_tuple=False)
|
|
|
cell_bw = tf.nn.rnn_cell.LSTMCell(
|
|
|
hps.num_hidden,
|
|
|
- initializer=tf.random_uniform_initializer(-0.1, 0.1, seed=113))
|
|
|
+ initializer=tf.random_uniform_initializer(-0.1, 0.1, seed=113),
|
|
|
+ state_is_tuple=False)
|
|
|
(emb_encoder_inputs, fw_state, _) = tf.nn.bidirectional_rnn(
|
|
|
cell_fw, cell_bw, emb_encoder_inputs, dtype=tf.float32,
|
|
|
sequence_length=article_lens)
|
|
@@ -188,7 +190,8 @@ class Seq2SeqAttentionModel(object):
|
|
|
|
|
|
cell = tf.nn.rnn_cell.LSTMCell(
|
|
|
hps.num_hidden,
|
|
|
- initializer=tf.random_uniform_initializer(-0.1, 0.1, seed=113))
|
|
|
+ initializer=tf.random_uniform_initializer(-0.1, 0.1, seed=113),
|
|
|
+ state_is_tuple=False)
|
|
|
|
|
|
encoder_outputs = [tf.reshape(x, [hps.batch_size, 1, 2*hps.num_hidden])
|
|
|
for x in encoder_outputs]
|