|
|
@@ -87,16 +87,14 @@ def train():
|
|
|
return tf.train.SessionRunArgs(loss) # Asks for loss value.
|
|
|
|
|
|
def after_run(self, run_context, run_values):
|
|
|
- log_frequency = FLAGS.log_frequency
|
|
|
-
|
|
|
- if self._step % log_frequency == 0:
|
|
|
+ if self._step % FLAGS.log_frequency == 0:
|
|
|
current_time = time.time()
|
|
|
duration = current_time - self._start_time
|
|
|
self._start_time = current_time
|
|
|
|
|
|
loss_value = run_values.results
|
|
|
- examples_per_sec = log_frequency * FLAGS.batch_size / duration
|
|
|
- sec_per_batch = float(duration / log_frequency)
|
|
|
+ examples_per_sec = FLAGS.log_frequency * FLAGS.batch_size / duration
|
|
|
+ sec_per_batch = float(duration / FLAGS.log_frequency)
|
|
|
|
|
|
format_str = ('%s: step %d, loss = %.2f (%.1f examples/sec; %.3f '
|
|
|
'sec/batch)')
|