|
|
@@ -116,7 +116,7 @@ def prefetch_input_data(reader,
|
|
|
enqueue_ops.append(values_queue.enqueue([value]))
|
|
|
tf.train.queue_runner.add_queue_runner(tf.train.queue_runner.QueueRunner(
|
|
|
values_queue, enqueue_ops))
|
|
|
- tf.scalar_summary(
|
|
|
+ tf.summary.scalar(
|
|
|
"queue/%s/fraction_of_%d_full" % (values_queue.name, capacity),
|
|
|
tf.cast(values_queue.size(), tf.float32) * (1. / capacity))
|
|
|
|
|
|
@@ -197,8 +197,8 @@ def batch_with_dynamic_pad(images_and_captions,
|
|
|
|
|
|
if add_summaries:
|
|
|
lengths = tf.add(tf.reduce_sum(mask, 1), 1)
|
|
|
- tf.scalar_summary("caption_length/batch_min", tf.reduce_min(lengths))
|
|
|
- tf.scalar_summary("caption_length/batch_max", tf.reduce_max(lengths))
|
|
|
- tf.scalar_summary("caption_length/batch_mean", tf.reduce_mean(lengths))
|
|
|
+ tf.summary.scalar("caption_length/batch_min", tf.reduce_min(lengths))
|
|
|
+ tf.summary.scalar("caption_length/batch_max", tf.reduce_max(lengths))
|
|
|
+ tf.summary.scalar("caption_length/batch_mean", tf.reduce_mean(lengths))
|
|
|
|
|
|
return images, input_seqs, target_seqs, mask
|