|
@@ -0,0 +1,323 @@
|
|
|
+# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
|
|
|
+#
|
|
|
+# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
+# you may not use this file except in compliance with the License.
|
|
|
+# You may obtain a copy of the License at
|
|
|
+#
|
|
|
+# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
+#
|
|
|
+# Unless required by applicable law or agreed to in writing, software
|
|
|
+# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
+# See the License for the specific language governing permissions and
|
|
|
+# limitations under the License.
|
|
|
+# ==============================================================================
|
|
|
+"""Contains the definition of the Inception V4 architecture.
|
|
|
+
|
|
|
+As described in http://arxiv.org/abs/1602.07261.
|
|
|
+
|
|
|
+ Inception-v4, Inception-ResNet and the Impact of Residual Connections
|
|
|
+ on Learning
|
|
|
+ Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, Alex Alemi
|
|
|
+"""
|
|
|
+from __future__ import absolute_import
|
|
|
+from __future__ import division
|
|
|
+from __future__ import print_function
|
|
|
+
|
|
|
+import tensorflow as tf
|
|
|
+
|
|
|
+from nets import inception_utils
|
|
|
+
|
|
|
+slim = tf.contrib.slim
|
|
|
+
|
|
|
+
|
|
|
+def block_inception_a(inputs, scope=None, reuse=None):
|
|
|
+ """Builds Inception-A block for Inception v4 network."""
|
|
|
+ # By default use stride=1 and SAME padding
|
|
|
+ with slim.arg_scope([slim.conv2d, slim.avg_pool2d, slim.max_pool2d],
|
|
|
+ stride=1, padding='SAME'):
|
|
|
+ with tf.variable_scope(scope, 'BlockInceptionA', [inputs], reuse=reuse):
|
|
|
+ with tf.variable_scope('Branch_0'):
|
|
|
+ branch_0 = slim.conv2d(inputs, 96, [1, 1], scope='Conv2d_0a_1x1')
|
|
|
+ with tf.variable_scope('Branch_1'):
|
|
|
+ branch_1 = slim.conv2d(inputs, 64, [1, 1], scope='Conv2d_0a_1x1')
|
|
|
+ branch_1 = slim.conv2d(branch_1, 96, [3, 3], scope='Conv2d_0b_3x3')
|
|
|
+ with tf.variable_scope('Branch_2'):
|
|
|
+ branch_2 = slim.conv2d(inputs, 64, [1, 1], scope='Conv2d_0a_1x1')
|
|
|
+ branch_2 = slim.conv2d(branch_2, 96, [3, 3], scope='Conv2d_0b_3x3')
|
|
|
+ branch_2 = slim.conv2d(branch_2, 96, [3, 3], scope='Conv2d_0c_3x3')
|
|
|
+ with tf.variable_scope('Branch_3'):
|
|
|
+ branch_3 = slim.avg_pool2d(inputs, [3, 3], scope='AvgPool_0a_3x3')
|
|
|
+ branch_3 = slim.conv2d(branch_3, 96, [1, 1], scope='Conv2d_0b_1x1')
|
|
|
+ return tf.concat(3, [branch_0, branch_1, branch_2, branch_3])
|
|
|
+
|
|
|
+
|
|
|
+def block_reduction_a(inputs, scope=None, reuse=None):
|
|
|
+ """Builds Reduction-A block for Inception v4 network."""
|
|
|
+ # By default use stride=1 and SAME padding
|
|
|
+ with slim.arg_scope([slim.conv2d, slim.avg_pool2d, slim.max_pool2d],
|
|
|
+ stride=1, padding='SAME'):
|
|
|
+ with tf.variable_scope(scope, 'BlockReductionA', [inputs], reuse=reuse):
|
|
|
+ with tf.variable_scope('Branch_0'):
|
|
|
+ branch_0 = slim.conv2d(inputs, 384, [3, 3], stride=2, padding='VALID',
|
|
|
+ scope='Conv2d_1a_3x3')
|
|
|
+ with tf.variable_scope('Branch_1'):
|
|
|
+ branch_1 = slim.conv2d(inputs, 192, [1, 1], scope='Conv2d_0a_1x1')
|
|
|
+ branch_1 = slim.conv2d(branch_1, 224, [3, 3], scope='Conv2d_0b_3x3')
|
|
|
+ branch_1 = slim.conv2d(branch_1, 256, [3, 3], stride=2,
|
|
|
+ padding='VALID', scope='Conv2d_1a_3x3')
|
|
|
+ with tf.variable_scope('Branch_2'):
|
|
|
+ branch_2 = slim.max_pool2d(inputs, [3, 3], stride=2, padding='VALID',
|
|
|
+ scope='MaxPool_1a_3x3')
|
|
|
+ return tf.concat(3, [branch_0, branch_1, branch_2])
|
|
|
+
|
|
|
+
|
|
|
+def block_inception_b(inputs, scope=None, reuse=None):
|
|
|
+ """Builds Inception-B block for Inception v4 network."""
|
|
|
+ # By default use stride=1 and SAME padding
|
|
|
+ with slim.arg_scope([slim.conv2d, slim.avg_pool2d, slim.max_pool2d],
|
|
|
+ stride=1, padding='SAME'):
|
|
|
+ with tf.variable_scope(scope, 'BlockInceptionB', [inputs], reuse=reuse):
|
|
|
+ with tf.variable_scope('Branch_0'):
|
|
|
+ branch_0 = slim.conv2d(inputs, 384, [1, 1], scope='Conv2d_0a_1x1')
|
|
|
+ with tf.variable_scope('Branch_1'):
|
|
|
+ branch_1 = slim.conv2d(inputs, 192, [1, 1], scope='Conv2d_0a_1x1')
|
|
|
+ branch_1 = slim.conv2d(branch_1, 224, [1, 7], scope='Conv2d_0b_1x7')
|
|
|
+ branch_1 = slim.conv2d(branch_1, 256, [7, 1], scope='Conv2d_0c_7x1')
|
|
|
+ with tf.variable_scope('Branch_2'):
|
|
|
+ branch_2 = slim.conv2d(inputs, 192, [1, 1], scope='Conv2d_0a_1x1')
|
|
|
+ branch_2 = slim.conv2d(branch_2, 192, [7, 1], scope='Conv2d_0b_7x1')
|
|
|
+ branch_2 = slim.conv2d(branch_2, 224, [1, 7], scope='Conv2d_0c_1x7')
|
|
|
+ branch_2 = slim.conv2d(branch_2, 224, [7, 1], scope='Conv2d_0d_7x1')
|
|
|
+ branch_2 = slim.conv2d(branch_2, 256, [1, 7], scope='Conv2d_0e_1x7')
|
|
|
+ with tf.variable_scope('Branch_3'):
|
|
|
+ branch_3 = slim.avg_pool2d(inputs, [3, 3], scope='AvgPool_0a_3x3')
|
|
|
+ branch_3 = slim.conv2d(branch_3, 128, [1, 1], scope='Conv2d_0b_1x1')
|
|
|
+ return tf.concat(3, [branch_0, branch_1, branch_2, branch_3])
|
|
|
+
|
|
|
+
|
|
|
+def block_reduction_b(inputs, scope=None, reuse=None):
|
|
|
+ """Builds Reduction-B block for Inception v4 network."""
|
|
|
+ # By default use stride=1 and SAME padding
|
|
|
+ with slim.arg_scope([slim.conv2d, slim.avg_pool2d, slim.max_pool2d],
|
|
|
+ stride=1, padding='SAME'):
|
|
|
+ with tf.variable_scope(scope, 'BlockReductionB', [inputs], reuse=reuse):
|
|
|
+ with tf.variable_scope('Branch_0'):
|
|
|
+ branch_0 = slim.conv2d(inputs, 192, [1, 1], scope='Conv2d_0a_1x1')
|
|
|
+ branch_0 = slim.conv2d(branch_0, 192, [3, 3], stride=2,
|
|
|
+ padding='VALID', scope='Conv2d_1a_3x3')
|
|
|
+ with tf.variable_scope('Branch_1'):
|
|
|
+ branch_1 = slim.conv2d(inputs, 256, [1, 1], scope='Conv2d_0a_1x1')
|
|
|
+ branch_1 = slim.conv2d(branch_1, 256, [1, 7], scope='Conv2d_0b_1x7')
|
|
|
+ branch_1 = slim.conv2d(branch_1, 320, [7, 1], scope='Conv2d_0c_7x1')
|
|
|
+ branch_1 = slim.conv2d(branch_1, 320, [3, 3], stride=2,
|
|
|
+ padding='VALID', scope='Conv2d_1a_3x3')
|
|
|
+ with tf.variable_scope('Branch_2'):
|
|
|
+ branch_2 = slim.max_pool2d(inputs, [3, 3], stride=2, padding='VALID',
|
|
|
+ scope='MaxPool_1a_3x3')
|
|
|
+ return tf.concat(3, [branch_0, branch_1, branch_2])
|
|
|
+
|
|
|
+
|
|
|
+def block_inception_c(inputs, scope=None, reuse=None):
|
|
|
+ """Builds Inception-C block for Inception v4 network."""
|
|
|
+ # By default use stride=1 and SAME padding
|
|
|
+ with slim.arg_scope([slim.conv2d, slim.avg_pool2d, slim.max_pool2d],
|
|
|
+ stride=1, padding='SAME'):
|
|
|
+ with tf.variable_scope(scope, 'BlockInceptionC', [inputs], reuse=reuse):
|
|
|
+ with tf.variable_scope('Branch_0'):
|
|
|
+ branch_0 = slim.conv2d(inputs, 256, [1, 1], scope='Conv2d_0a_1x1')
|
|
|
+ with tf.variable_scope('Branch_1'):
|
|
|
+ branch_1 = slim.conv2d(inputs, 384, [1, 1], scope='Conv2d_0a_1x1')
|
|
|
+ branch_1 = tf.concat(3, [
|
|
|
+ slim.conv2d(branch_1, 256, [1, 3], scope='Conv2d_0b_1x3'),
|
|
|
+ slim.conv2d(branch_1, 256, [3, 1], scope='Conv2d_0c_3x1')])
|
|
|
+ with tf.variable_scope('Branch_2'):
|
|
|
+ branch_2 = slim.conv2d(inputs, 384, [1, 1], scope='Conv2d_0a_1x1')
|
|
|
+ branch_2 = slim.conv2d(branch_2, 448, [3, 1], scope='Conv2d_0b_3x1')
|
|
|
+ branch_2 = slim.conv2d(branch_2, 512, [1, 3], scope='Conv2d_0c_1x3')
|
|
|
+ branch_2 = tf.concat(3, [
|
|
|
+ slim.conv2d(branch_2, 256, [1, 3], scope='Conv2d_0d_1x3'),
|
|
|
+ slim.conv2d(branch_2, 256, [3, 1], scope='Conv2d_0e_3x1')])
|
|
|
+ with tf.variable_scope('Branch_3'):
|
|
|
+ branch_3 = slim.avg_pool2d(inputs, [3, 3], scope='AvgPool_0a_3x3')
|
|
|
+ branch_3 = slim.conv2d(branch_3, 256, [1, 1], scope='Conv2d_0b_1x1')
|
|
|
+ return tf.concat(3, [branch_0, branch_1, branch_2, branch_3])
|
|
|
+
|
|
|
+
|
|
|
+def inception_v4_base(inputs, final_endpoint='Mixed_7d', scope=None):
|
|
|
+ """Creates the Inception V4 network up to the given final endpoint.
|
|
|
+
|
|
|
+ Args:
|
|
|
+ inputs: a 4-D tensor of size [batch_size, height, width, 3].
|
|
|
+ final_endpoint: specifies the endpoint to construct the network up to.
|
|
|
+ It can be one of [ 'Conv2d_1a_3x3', 'Conv2d_2a_3x3', 'Conv2d_2b_3x3',
|
|
|
+ 'Mixed_3a', 'Mixed_4a', 'Mixed_5a', 'Mixed_5b', 'Mixed_5c', 'Mixed_5d',
|
|
|
+ 'Mixed_5e', 'Mixed_6a', 'Mixed_6b', 'Mixed_6c', 'Mixed_6d', 'Mixed_6e',
|
|
|
+ 'Mixed_6f', 'Mixed_6g', 'Mixed_6h', 'Mixed_7a', 'Mixed_7b', 'Mixed_7c',
|
|
|
+ 'Mixed_7d']
|
|
|
+ scope: Optional variable_scope.
|
|
|
+
|
|
|
+ Returns:
|
|
|
+ logits: the logits outputs of the model.
|
|
|
+ end_points: the set of end_points from the inception model.
|
|
|
+
|
|
|
+ Raises:
|
|
|
+ ValueError: if final_endpoint is not set to one of the predefined values,
|
|
|
+ """
|
|
|
+ end_points = {}
|
|
|
+
|
|
|
+ def add_and_check_final(name, net):
|
|
|
+ end_points[name] = net
|
|
|
+ return name == final_endpoint
|
|
|
+
|
|
|
+ with tf.variable_scope(scope, 'InceptionV4', [inputs]):
|
|
|
+ with slim.arg_scope([slim.conv2d, slim.max_pool2d, slim.avg_pool2d],
|
|
|
+ stride=1, padding='SAME'):
|
|
|
+ # 299 x 299 x 3
|
|
|
+ net = slim.conv2d(inputs, 32, [3, 3], stride=2,
|
|
|
+ padding='VALID', scope='Conv2d_1a_3x3')
|
|
|
+ if add_and_check_final('Conv2d_1a_3x3', net): return net, end_points
|
|
|
+ # 149 x 149 x 32
|
|
|
+ net = slim.conv2d(net, 32, [3, 3], padding='VALID',
|
|
|
+ scope='Conv2d_2a_3x3')
|
|
|
+ if add_and_check_final('Conv2d_2a_3x3', net): return net, end_points
|
|
|
+ # 147 x 147 x 32
|
|
|
+ net = slim.conv2d(net, 64, [3, 3], scope='Conv2d_2b_3x3')
|
|
|
+ if add_and_check_final('Conv2d_2b_3x3', net): return net, end_points
|
|
|
+ # 147 x 147 x 64
|
|
|
+ with tf.variable_scope('Mixed_3a'):
|
|
|
+ with tf.variable_scope('Branch_0'):
|
|
|
+ branch_0 = slim.max_pool2d(net, [3, 3], stride=2, padding='VALID',
|
|
|
+ scope='MaxPool_0a_3x3')
|
|
|
+ with tf.variable_scope('Branch_1'):
|
|
|
+ branch_1 = slim.conv2d(net, 96, [3, 3], stride=2, padding='VALID',
|
|
|
+ scope='Conv2d_0a_3x3')
|
|
|
+ net = tf.concat(3, [branch_0, branch_1])
|
|
|
+ if add_and_check_final('Mixed_3a', net): return net, end_points
|
|
|
+
|
|
|
+ # 73 x 73 x 160
|
|
|
+ with tf.variable_scope('Mixed_4a'):
|
|
|
+ with tf.variable_scope('Branch_0'):
|
|
|
+ branch_0 = slim.conv2d(net, 64, [1, 1], scope='Conv2d_0a_1x1')
|
|
|
+ branch_0 = slim.conv2d(branch_0, 96, [3, 3], padding='VALID',
|
|
|
+ scope='Conv2d_1a_3x3')
|
|
|
+ with tf.variable_scope('Branch_1'):
|
|
|
+ branch_1 = slim.conv2d(net, 64, [1, 1], scope='Conv2d_0a_1x1')
|
|
|
+ branch_1 = slim.conv2d(branch_1, 64, [1, 7], scope='Conv2d_0b_1x7')
|
|
|
+ branch_1 = slim.conv2d(branch_1, 64, [7, 1], scope='Conv2d_0c_7x1')
|
|
|
+ branch_1 = slim.conv2d(branch_1, 96, [3, 3], padding='VALID',
|
|
|
+ scope='Conv2d_1a_3x3')
|
|
|
+ net = tf.concat(3, [branch_0, branch_1])
|
|
|
+ if add_and_check_final('Mixed_4a', net): return net, end_points
|
|
|
+
|
|
|
+ # 71 x 71 x 192
|
|
|
+ with tf.variable_scope('Mixed_5a'):
|
|
|
+ with tf.variable_scope('Branch_0'):
|
|
|
+ branch_0 = slim.conv2d(net, 192, [3, 3], stride=2, padding='VALID',
|
|
|
+ scope='Conv2d_1a_3x3')
|
|
|
+ with tf.variable_scope('Branch_1'):
|
|
|
+ branch_1 = slim.max_pool2d(net, [3, 3], stride=2, padding='VALID',
|
|
|
+ scope='MaxPool_1a_3x3')
|
|
|
+ net = tf.concat(3, [branch_0, branch_1])
|
|
|
+ if add_and_check_final('Mixed_5a', net): return net, end_points
|
|
|
+
|
|
|
+ # 35 x 35 x 384
|
|
|
+ # 4 x Inception-A blocks
|
|
|
+ for idx in xrange(4):
|
|
|
+ block_scope = 'Mixed_5' + chr(ord('b') + idx)
|
|
|
+ net = block_inception_a(net, block_scope)
|
|
|
+ if add_and_check_final(block_scope, net): return net, end_points
|
|
|
+
|
|
|
+ # 35 x 35 x 384
|
|
|
+ # Reduction-A block
|
|
|
+ net = block_reduction_a(net, 'Mixed_6a')
|
|
|
+ if add_and_check_final('Mixed_6a', net): return net, end_points
|
|
|
+
|
|
|
+ # 17 x 17 x 1024
|
|
|
+ # 7 x Inception-B blocks
|
|
|
+ for idx in xrange(7):
|
|
|
+ block_scope = 'Mixed_6' + chr(ord('b') + idx)
|
|
|
+ net = block_inception_b(net, block_scope)
|
|
|
+ if add_and_check_final(block_scope, net): return net, end_points
|
|
|
+
|
|
|
+ # 17 x 17 x 1024
|
|
|
+ # Reduction-B block
|
|
|
+ net = block_reduction_b(net, 'Mixed_7a')
|
|
|
+ if add_and_check_final('Mixed_7a', net): return net, end_points
|
|
|
+
|
|
|
+ # 8 x 8 x 1536
|
|
|
+ # 3 x Inception-C blocks
|
|
|
+ for idx in xrange(3):
|
|
|
+ block_scope = 'Mixed_7' + chr(ord('b') + idx)
|
|
|
+ net = block_inception_c(net, block_scope)
|
|
|
+ if add_and_check_final(block_scope, net): return net, end_points
|
|
|
+ raise ValueError('Unknown final endpoint %s' % final_endpoint)
|
|
|
+
|
|
|
+
|
|
|
+def inception_v4(inputs, num_classes=1001, is_training=True,
|
|
|
+ dropout_keep_prob=0.8,
|
|
|
+ reuse=None,
|
|
|
+ scope='InceptionV4',
|
|
|
+ create_aux_logits=True):
|
|
|
+ """Creates the Inception V4 model.
|
|
|
+
|
|
|
+ Args:
|
|
|
+ inputs: a 4-D tensor of size [batch_size, height, width, 3].
|
|
|
+ num_classes: number of predicted classes.
|
|
|
+ is_training: whether is training or not.
|
|
|
+ dropout_keep_prob: float, the fraction to keep before final layer.
|
|
|
+ reuse: whether or not the network and its variables should be reused. To be
|
|
|
+ able to reuse 'scope' must be given.
|
|
|
+ scope: Optional variable_scope.
|
|
|
+ create_aux_logits: Whether to include the auxilliary logits.
|
|
|
+
|
|
|
+ Returns:
|
|
|
+ logits: the logits outputs of the model.
|
|
|
+ end_points: the set of end_points from the inception model.
|
|
|
+ """
|
|
|
+ end_points = {}
|
|
|
+ with tf.variable_scope(scope, 'InceptionV4', [inputs], reuse=reuse) as scope:
|
|
|
+ with slim.arg_scope([slim.batch_norm, slim.dropout],
|
|
|
+ is_training=is_training):
|
|
|
+ net, end_points = inception_v4_base(inputs, scope=scope)
|
|
|
+
|
|
|
+ with slim.arg_scope([slim.conv2d, slim.max_pool2d, slim.avg_pool2d],
|
|
|
+ stride=1, padding='SAME'):
|
|
|
+ # Auxiliary Head logits
|
|
|
+ if create_aux_logits:
|
|
|
+ with tf.variable_scope('AuxLogits'):
|
|
|
+ # 17 x 17 x 1024
|
|
|
+ aux_logits = end_points['Mixed_6h']
|
|
|
+ aux_logits = slim.avg_pool2d(aux_logits, [5, 5], stride=3,
|
|
|
+ padding='VALID',
|
|
|
+ scope='AvgPool_1a_5x5')
|
|
|
+ aux_logits = slim.conv2d(aux_logits, 128, [1, 1],
|
|
|
+ scope='Conv2d_1b_1x1')
|
|
|
+ aux_logits = slim.conv2d(aux_logits, 768,
|
|
|
+ aux_logits.get_shape()[1:3],
|
|
|
+ padding='VALID', scope='Conv2d_2a')
|
|
|
+ aux_logits = slim.flatten(aux_logits)
|
|
|
+ aux_logits = slim.fully_connected(aux_logits, num_classes,
|
|
|
+ activation_fn=None,
|
|
|
+ scope='Aux_logits')
|
|
|
+ end_points['AuxLogits'] = aux_logits
|
|
|
+
|
|
|
+ # Final pooling and prediction
|
|
|
+ with tf.variable_scope('Logits'):
|
|
|
+ # 8 x 8 x 1536
|
|
|
+ net = slim.avg_pool2d(net, net.get_shape()[1:3], padding='VALID',
|
|
|
+ scope='AvgPool_1a')
|
|
|
+ # 1 x 1 x 1536
|
|
|
+ net = slim.dropout(net, dropout_keep_prob, scope='Dropout_1b')
|
|
|
+ net = slim.flatten(net, scope='PreLogitsFlatten')
|
|
|
+ end_points['PreLogitsFlatten'] = net
|
|
|
+ # 1536
|
|
|
+ logits = slim.fully_connected(net, num_classes, activation_fn=None,
|
|
|
+ scope='Logits')
|
|
|
+ end_points['Logits'] = logits
|
|
|
+ end_points['Predictions'] = tf.nn.softmax(logits, name='Predictions')
|
|
|
+ return logits, end_points
|
|
|
+inception_v4.default_image_size = 299
|
|
|
+
|
|
|
+
|
|
|
+inception_v4_arg_scope = inception_utils.inception_arg_scope
|