Jelajahi Sumber

Implement distributed inception (#44)

Implements a distributed trainer for Inception.
Jianmin Chen 9 tahun lalu
induk
melakukan
84b58a6006

File diff ditekan karena terlalu besar
+ 417 - 285
inception/README.md


+ 22 - 0
inception/inception/BUILD

@@ -103,6 +103,17 @@ py_binary(
 )
 
 py_binary(
+    name = "imagenet_distributed_train",
+    srcs = [
+        "imagenet_distributed_train.py",
+    ],
+    deps = [
+        ":imagenet_data",
+        ":inception_distributed_train",
+    ],
+)
+
+py_binary(
     name = "flowers_train",
     srcs = [
         "flowers_train.py",
@@ -124,6 +135,17 @@ py_library(
     ],
 )
 
+py_library(
+    name = "inception_distributed_train",
+    srcs = [
+        "inception_distributed_train.py",
+    ],
+    deps = [
+        ":image_processing",
+        ":inception",
+    ],
+)
+
 py_binary(
     name = "build_image_data",
     srcs = ["data/build_image_data.py"],

+ 65 - 0
inception/inception/imagenet_distributed_train.py

@@ -0,0 +1,65 @@
+# Copyright 2016 Google Inc. All Rights Reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+#     http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+# ==============================================================================
+# pylint: disable=line-too-long
+"""A binary to train Inception in a distributed manner using multiple systems.
+
+Please see accompanying README.md for details and instructions.
+"""
+from __future__ import absolute_import
+from __future__ import division
+from __future__ import print_function
+
+import tensorflow as tf
+
+from inception import inception_distributed_train
+from inception.imagenet_data import ImagenetData
+
+FLAGS = tf.app.flags.FLAGS
+
+
+def main(unused_args):
+  assert FLAGS.job_name in ['ps', 'worker'], 'job_name must be ps or worker'
+
+  # Extract all the hostnames for the ps and worker jobs to construct the
+  # cluster spec.
+  ps_hosts = FLAGS.ps_hosts.split(',')
+  worker_hosts = FLAGS.worker_hosts.split(',')
+  tf.logging.info('PS hosts are: %s' % ps_hosts)
+  tf.logging.info('Worker hosts are: %s' % worker_hosts)
+
+  cluster_spec = tf.train.ClusterSpec({'ps': ps_hosts,
+                                       'worker': worker_hosts})
+  server = tf.train.Server(
+      {'ps': ps_hosts,
+       'worker': worker_hosts},
+      job_name=FLAGS.job_name,
+      task_index=FLAGS.task_id)
+
+  if FLAGS.job_name == 'ps':
+    # `ps` jobs wait for incoming connections from the workers.
+    server.join()
+  else:
+    # `worker` jobs will actually do the work.
+    dataset = ImagenetData(subset=FLAGS.subset)
+    assert dataset.data_files()
+    # Only the chief checks for or creates train_dir.
+    if FLAGS.task_id == 0:
+      if not tf.gfile.Exists(FLAGS.train_dir):
+        tf.gfile.MakeDirs(FLAGS.train_dir)
+    inception_distributed_train.train(server.target, dataset, cluster_spec)
+
+if __name__ == '__main__':
+  tf.logging.set_verbosity(tf.logging.INFO)
+  tf.app.run()

+ 315 - 0
inception/inception/inception_distributed_train.py

@@ -0,0 +1,315 @@
+# Copyright 2016 Google Inc. All Rights Reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+#     http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+# ==============================================================================
+"""A library to train Inception using multiple replicas with synchronous update.
+
+Please see accompanying README.md for details and instructions.
+"""
+from __future__ import absolute_import
+from __future__ import division
+from __future__ import print_function
+
+from datetime import datetime
+import os.path
+import time
+
+import numpy as np
+import tensorflow as tf
+
+from inception import image_processing
+from inception import inception_model as inception
+from inception.slim import slim
+
+FLAGS = tf.app.flags.FLAGS
+
+tf.app.flags.DEFINE_string('job_name', '', 'One of "ps", "worker"')
+tf.app.flags.DEFINE_string('ps_hosts', '',
+                           """Comma-separated list of hostname:port for the """
+                           """parameter server jobs. e.g. """
+                           """'machine1:2222,machine2:1111,machine2:2222'""")
+tf.app.flags.DEFINE_string('worker_hosts', '',
+                           """Comma-separated list of hostname:port for the """
+                           """worker jobs. e.g. """
+                           """'machine1:2222,machine2:1111,machine2:2222'""")
+
+tf.app.flags.DEFINE_string('train_dir', '/tmp/imagenet_train',
+                           """Directory where to write event logs """
+                           """and checkpoint.""")
+tf.app.flags.DEFINE_integer('max_steps', 1000000, 'Number of batches to run.')
+tf.app.flags.DEFINE_string('subset', 'train', 'Either "train" or "validation".')
+tf.app.flags.DEFINE_boolean('log_device_placement', False,
+                            'Whether to log device placement.')
+
+# Task ID is used to select the chief and also to access the local_step for
+# each replica to check staleness of the gradients in sync_replicas_optimizer.
+tf.app.flags.DEFINE_integer(
+    'task_id', 0, 'Task ID of the worker/replica running the training.')
+
+# More details can be found in the sync_replicas_optimizer class:
+# tensorflow/python/training/sync_replicas_optimizer.py
+tf.app.flags.DEFINE_integer('num_replicas_to_aggregate', -1,
+                            """Number of gradients to collect before """
+                            """updating the parameters.""")
+tf.app.flags.DEFINE_integer('save_interval_secs', 10 * 60,
+                            'Save interval seconds.')
+tf.app.flags.DEFINE_integer('save_summaries_secs', 180,
+                            'Save summaries interval seconds.')
+
+# **IMPORTANT**
+# Please note that this learning rate schedule is heavily dependent on the
+# hardware architecture, batch size and any changes to the model architecture
+# specification. Selecting a finely tuned learning rate schedule is an
+# empirical process that requires some experimentation. Please see README.md
+# more guidance and discussion.
+#
+# Learning rate decay factor selected from https://arxiv.org/abs/1604.00981
+tf.app.flags.DEFINE_float('initial_learning_rate', 0.045,
+                          'Initial learning rate.')
+tf.app.flags.DEFINE_float('num_epochs_per_decay', 2.0,
+                          'Epochs after which learning rate decays.')
+tf.app.flags.DEFINE_float('learning_rate_decay_factor', 0.94,
+                          'Learning rate decay factor.')
+
+# Constants dictating the learning rate schedule.
+RMSPROP_DECAY = 0.9                # Decay term for RMSProp.
+RMSPROP_MOMENTUM = 0.9             # Momentum in RMSProp.
+RMSPROP_EPSILON = 1.0              # Epsilon term for RMSProp.
+
+
+def train(target, dataset, cluster_spec):
+  """Train Inception on a dataset for a number of steps."""
+  # Number of workers and parameter servers are infered from the workers and ps
+  # hosts string.
+  num_workers = len(cluster_spec.as_dict()['worker'])
+  num_parameter_servers = len(cluster_spec.as_dict()['ps'])
+  # If no value is given, num_replicas_to_aggregate defaults to be the number of
+  # workers.
+  if FLAGS.num_replicas_to_aggregate == -1:
+    num_replicas_to_aggregate = num_workers
+  else:
+    num_replicas_to_aggregate = FLAGS.num_replicas_to_aggregate
+
+  # Both should be greater than 0 in a distributed training.
+  assert num_workers > 0 and num_parameter_servers > 0, (' num_workers and '
+                                                         'num_parameter_servers'
+                                                         ' must be > 0.')
+
+  # Choose worker 0 as the chief. Note that any worker could be the chief
+  # but there should be only one chief.
+  is_chief = (FLAGS.task_id == 0)
+
+  # Ops are assigned to worker by default.
+  with tf.device('/job:worker/task:%d' % FLAGS.task_id):
+    # Variables and its related init/assign ops are assigned to ps.
+    with slim.scopes.arg_scope(
+        [slim.variables.variable, slim.variables.global_step],
+        device=slim.variables.VariableDeviceChooser(num_parameter_servers)):
+      # Create a variable to count the number of train() calls. This equals the
+      # number of updates applied to the variables.
+      global_step = slim.variables.global_step()
+
+      # Calculate the learning rate schedule.
+      num_batches_per_epoch = (dataset.num_examples_per_epoch() /
+                               FLAGS.batch_size)
+      # Decay steps need to be divided by the number of replicas to aggregate.
+      decay_steps = int(num_batches_per_epoch * FLAGS.num_epochs_per_decay /
+                        num_replicas_to_aggregate)
+
+      # Decay the learning rate exponentially based on the number of steps.
+      lr = tf.train.exponential_decay(FLAGS.initial_learning_rate,
+                                      global_step,
+                                      decay_steps,
+                                      FLAGS.learning_rate_decay_factor,
+                                      staircase=True)
+      # Add a summary to track the learning rate.
+      tf.scalar_summary('learning_rate', lr)
+
+      # Create an optimizer that performs gradient descent.
+      opt = tf.train.RMSPropOptimizer(lr,
+                                      RMSPROP_DECAY,
+                                      momentum=RMSPROP_MOMENTUM,
+                                      epsilon=RMSPROP_EPSILON)
+
+      images, labels = image_processing.distorted_inputs(
+          dataset,
+          batch_size=FLAGS.batch_size,
+          num_preprocess_threads=FLAGS.num_preprocess_threads)
+
+      # Number of classes in the Dataset label set plus 1.
+      # Label 0 is reserved for an (unused) background class.
+      num_classes = dataset.num_classes() + 1
+      logits = inception.inference(images, num_classes, for_training=True)
+      # Add classification loss.
+      inception.loss(logits, labels)
+
+      # Gather all of the losses including regularization losses.
+      losses = tf.get_collection(slim.losses.LOSSES_COLLECTION)
+      losses += tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)
+
+      total_loss = tf.add_n(losses, name='total_loss')
+
+      if is_chief:
+        # Compute the moving average of all individual losses and the
+        # total loss.
+        loss_averages = tf.train.ExponentialMovingAverage(0.9, name='avg')
+        loss_averages_op = loss_averages.apply(losses + [total_loss])
+
+        # Attach a scalar summmary to all individual losses and the total loss;
+        # do the same for the averaged version of the losses.
+        for l in losses + [total_loss]:
+          loss_name = l.op.name
+          # Name each loss as '(raw)' and name the moving average version of the
+          # loss as the original loss name.
+          tf.scalar_summary(loss_name + ' (raw)', l)
+          tf.scalar_summary(loss_name, loss_averages.average(l))
+
+        # Add dependency to compute loss_averages.
+        with tf.control_dependencies([loss_averages_op]):
+          total_loss = tf.identity(total_loss)
+
+      # Track the moving averages of all trainable variables.
+      # Note that we maintain a 'double-average' of the BatchNormalization
+      # global statistics.
+      # This is not needed when the number of replicas are small but important
+      # for synchronous distributed training with tens of workers/replicas.
+      exp_moving_averager = tf.train.ExponentialMovingAverage(
+          inception.MOVING_AVERAGE_DECAY, global_step)
+
+      variables_to_average = (
+          tf.trainable_variables() + tf.moving_average_variables())
+
+      # Add histograms for model variables.
+      for var in variables_to_average:
+        tf.histogram_summary(var.op.name, var)
+
+      # Create synchronous replica optimizer.
+      opt = tf.train.SyncReplicasOptimizer(
+          opt,
+          replicas_to_aggregate=num_replicas_to_aggregate,
+          replica_id=FLAGS.task_id,
+          total_num_replicas=num_workers,
+          variable_averages=exp_moving_averager,
+          variables_to_average=variables_to_average)
+
+      batchnorm_updates = tf.get_collection(slim.ops.UPDATE_OPS_COLLECTION)
+      assert batchnorm_updates, 'Batchnorm updates are missing'
+      batchnorm_updates_op = tf.group(*batchnorm_updates)
+      # Add dependency to compute batchnorm_updates.
+      with tf.control_dependencies([batchnorm_updates_op]):
+        total_loss = tf.identity(total_loss)
+
+      # Compute gradients with respect to the loss.
+      grads = opt.compute_gradients(total_loss)
+
+      # Add histograms for gradients.
+      for grad, var in grads:
+        if grad is not None:
+          tf.histogram_summary(var.op.name + '/gradients', grad)
+
+      apply_gradients_op = opt.apply_gradients(grads, global_step=global_step)
+
+      with tf.control_dependencies([apply_gradients_op]):
+        train_op = tf.identity(total_loss, name='train_op')
+
+      # Get chief queue_runners, init_tokens and clean_up_op, which is used to
+      # synchronize replicas.
+      # More details can be found in sync_replicas_optimizer.
+      chief_queue_runners = [opt.get_chief_queue_runner()]
+      init_tokens_op = opt.get_init_tokens_op()
+      clean_up_op = opt.get_clean_up_op()
+
+      # Create a saver.
+      saver = tf.train.Saver()
+
+      # Build the summary operation based on the TF collection of Summaries.
+      summary_op = tf.merge_all_summaries()
+
+      # Build an initialization operation to run below.
+      init_op = tf.initialize_all_variables()
+
+      # We run the summaries in the same thread as the training operations by
+      # passing in None for summary_op to avoid a summary_thread being started.
+      # Running summaries and training operations in parallel could run out of
+      # GPU memory.
+      sv = tf.train.Supervisor(is_chief=is_chief,
+                               logdir=FLAGS.train_dir,
+                               init_op=init_op,
+                               summary_op=None,
+                               global_step=global_step,
+                               saver=saver,
+                               save_model_secs=FLAGS.save_interval_secs)
+
+      tf.logging.info('%s Supervisor' % datetime.now())
+
+      sess_config = tf.ConfigProto(
+          allow_soft_placement=True,
+          log_device_placement=FLAGS.log_device_placement)
+
+      # Get a session.
+      sess = sv.prepare_or_wait_for_session(target, config=sess_config)
+
+      # Start the queue runners.
+      queue_runners = tf.get_collection(tf.GraphKeys.QUEUE_RUNNERS)
+      sv.start_queue_runners(sess, queue_runners)
+      tf.logging.info('Started %d queues for processing input data.',
+                      len(queue_runners))
+
+      if is_chief:
+        sv.start_queue_runners(sess, chief_queue_runners)
+        sess.run(init_tokens_op)
+
+      # Train, checking for Nans. Concurrently run the summary operation at a
+      # specified interval. Note that the summary_op and train_op never run
+      # simultaneously in order to prevent running out of GPU memory.
+      next_summary_time = time.time() + FLAGS.save_summaries_secs
+      while not sv.should_stop():
+        try:
+          start_time = time.time()
+          loss_value, step = sess.run([train_op, global_step])
+          assert not np.isnan(loss_value), 'Model diverged with loss = NaN'
+          if step > FLAGS.max_steps:
+            break
+          duration = time.time() - start_time
+
+          if step % 30 == 0:
+            examples_per_sec = FLAGS.batch_size / float(duration)
+            format_str = ('Worker %d: %s: step %d, loss = %.2f'
+                          '(%.1f examples/sec; %.3f  sec/batch)')
+            tf.logging.info(format_str %
+                            (FLAGS.task_id, datetime.now(), step, loss_value,
+                             examples_per_sec, duration))
+
+          # Determine if the summary_op should be run on the chief worker.
+          if is_chief and next_summary_time < time.time():
+            tf.logging.info('Running Summary operation on the chief.')
+            summary_str = sess.run(summary_op)
+            sv.summary_computed(sess, summary_str)
+            tf.logging.info('Finished running Summary operation.')
+
+            # Determine the next time for running the summary.
+            next_summary_time += FLAGS.save_summaries_secs
+        except:
+          if is_chief:
+            tf.logging.info('About to execute sync_clean_up_op!')
+            sess.run(clean_up_op)
+          raise
+
+      # Stop the supervisor.  This also waits for service threads to finish.
+      sv.stop()
+
+      # Save after the training ends.
+      if is_chief:
+        saver.save(sess,
+                   os.path.join(FLAGS.train_dir, 'model.ckpt'),
+                   global_step=global_step)

+ 7 - 10
inception/inception/inception_model.py

@@ -26,7 +26,6 @@ from __future__ import print_function
 
 import re
 
-
 import tensorflow as tf
 
 from inception.slim import slim
@@ -79,15 +78,13 @@ def inference(images, num_classes, for_training=False, restore_logits=True,
                         stddev=0.1,
                         activation=tf.nn.relu,
                         batch_norm_params=batch_norm_params):
-      # Force all Variables to reside on the CPU.
-      with slim.arg_scope([slim.variables.variable], device='/cpu:0'):
-        logits, endpoints = slim.inception.inception_v3(
-            images,
-            dropout_keep_prob=0.8,
-            num_classes=num_classes,
-            is_training=for_training,
-            restore_logits=restore_logits,
-            scope=scope)
+      logits, endpoints = slim.inception.inception_v3(
+          images,
+          dropout_keep_prob=0.8,
+          num_classes=num_classes,
+          is_training=for_training,
+          restore_logits=restore_logits,
+          scope=scope)
 
   # Add summaries for viewing model statistics on TensorBoard.
   _activation_summaries(endpoints)

+ 16 - 7
inception/inception/inception_train.py

@@ -24,8 +24,6 @@ import os.path
 import re
 import time
 
-
-
 import numpy as np
 import tensorflow as tf
 
@@ -215,7 +213,6 @@ def train(dataset):
     num_preprocess_threads = FLAGS.num_preprocess_threads * FLAGS.num_gpus
     images, labels = image_processing.distorted_inputs(
         dataset,
-        batch_size=split_batch_size,
         num_preprocess_threads=num_preprocess_threads)
 
     input_summaries = copy.copy(tf.get_collection(tf.GraphKeys.SUMMARIES))
@@ -229,10 +226,22 @@ def train(dataset):
     for i in xrange(FLAGS.num_gpus):
       with tf.device('/gpu:%d' % i):
         with tf.name_scope('%s_%d' % (inception.TOWER_NAME, i)) as scope:
-          # Calculate the loss for one tower of the ImageNet model. This
-          # function constructs the entire ImageNet model but shares the
-          # variables across all towers.
-          loss = _tower_loss(images, labels, num_classes, scope)
+          # Split the batch of images and labels.
+          batch_start = split_batch_size * i
+          images_batch = tf.slice(images,
+                                  begin=[batch_start, 0, 0, 0],
+                                  size=[split_batch_size, -1, -1, -1])
+          labels_batch = tf.slice(labels,
+                                  begin=[batch_start],
+                                  size=[split_batch_size])
+
+
+          # Force all Variables to reside on the CPU.
+          with slim.arg_scope([slim.variables.variable], device='/cpu:0'):
+            # Calculate the loss for one tower of the ImageNet model. This
+            # function constructs the entire ImageNet model but shares the
+            # variables across all towers.
+            loss = _tower_loss(images_batch, labels_batch, num_classes, scope)
 
           # Reuse variables for the next tower.
           tf.get_variable_scope().reuse_variables()