|
@@ -0,0 +1,443 @@
|
|
|
+# Copyright 2016 The TensorFlow Authors All Rights Reserved.
|
|
|
+#
|
|
|
+# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
+# you may not use this file except in compliance with the License.
|
|
|
+# You may obtain a copy of the License at
|
|
|
+#
|
|
|
+# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
+#
|
|
|
+# Unless required by applicable law or agreed to in writing, software
|
|
|
+# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
+# See the License for the specific language governing permissions and
|
|
|
+# limitations under the License.
|
|
|
+# ==============================================================================
|
|
|
+"""Contains different architectures for the different DSN parts.
|
|
|
+
|
|
|
+We define here the modules that can be used in the different parts of the DSN
|
|
|
+model.
|
|
|
+- shared encoder (dsn_cropped_linemod, dann_xxxx)
|
|
|
+- private encoder (default_encoder)
|
|
|
+- decoder (large_decoder, gtsrb_decoder, small_decoder)
|
|
|
+"""
|
|
|
+import tensorflow as tf
|
|
|
+
|
|
|
+#from models.domain_adaptation.domain_separation
|
|
|
+import utils
|
|
|
+
|
|
|
+slim = tf.contrib.slim
|
|
|
+
|
|
|
+
|
|
|
+def default_batch_norm_params(is_training=False):
|
|
|
+ """Returns default batch normalization parameters for DSNs.
|
|
|
+
|
|
|
+ Args:
|
|
|
+ is_training: whether or not the model is training.
|
|
|
+
|
|
|
+ Returns:
|
|
|
+ a dictionary that maps batch norm parameter names (strings) to values.
|
|
|
+ """
|
|
|
+ return {
|
|
|
+ # Decay for the moving averages.
|
|
|
+ 'decay': 0.5,
|
|
|
+ # epsilon to prevent 0s in variance.
|
|
|
+ 'epsilon': 0.001,
|
|
|
+ 'is_training': is_training
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+################################################################################
|
|
|
+# PRIVATE ENCODERS
|
|
|
+################################################################################
|
|
|
+def default_encoder(images, code_size, batch_norm_params=None,
|
|
|
+ weight_decay=0.0):
|
|
|
+ """Encodes the given images to codes of the given size.
|
|
|
+
|
|
|
+ Args:
|
|
|
+ images: a tensor of size [batch_size, height, width, 1].
|
|
|
+ code_size: the number of hidden units in the code layer of the classifier.
|
|
|
+ batch_norm_params: a dictionary that maps batch norm parameter names to
|
|
|
+ values.
|
|
|
+ weight_decay: the value for the weight decay coefficient.
|
|
|
+
|
|
|
+ Returns:
|
|
|
+ end_points: the code of the input.
|
|
|
+ """
|
|
|
+ end_points = {}
|
|
|
+ with slim.arg_scope(
|
|
|
+ [slim.conv2d, slim.fully_connected],
|
|
|
+ weights_regularizer=slim.l2_regularizer(weight_decay),
|
|
|
+ activation_fn=tf.nn.relu,
|
|
|
+ normalizer_fn=slim.batch_norm,
|
|
|
+ normalizer_params=batch_norm_params):
|
|
|
+ with slim.arg_scope([slim.conv2d], kernel_size=[5, 5], padding='SAME'):
|
|
|
+ net = slim.conv2d(images, 32, scope='conv1')
|
|
|
+ net = slim.max_pool2d(net, [2, 2], 2, scope='pool1')
|
|
|
+ net = slim.conv2d(net, 64, scope='conv2')
|
|
|
+ net = slim.max_pool2d(net, [2, 2], 2, scope='pool2')
|
|
|
+
|
|
|
+ net = slim.flatten(net)
|
|
|
+ end_points['flatten'] = net
|
|
|
+ net = slim.fully_connected(net, code_size, scope='fc1')
|
|
|
+ end_points['fc3'] = net
|
|
|
+ return end_points
|
|
|
+
|
|
|
+
|
|
|
+################################################################################
|
|
|
+# DECODERS
|
|
|
+################################################################################
|
|
|
+def large_decoder(codes,
|
|
|
+ height,
|
|
|
+ width,
|
|
|
+ channels,
|
|
|
+ batch_norm_params=None,
|
|
|
+ weight_decay=0.0):
|
|
|
+ """Decodes the codes to a fixed output size.
|
|
|
+
|
|
|
+ Args:
|
|
|
+ codes: a tensor of size [batch_size, code_size].
|
|
|
+ height: the height of the output images.
|
|
|
+ width: the width of the output images.
|
|
|
+ channels: the number of the output channels.
|
|
|
+ batch_norm_params: a dictionary that maps batch norm parameter names to
|
|
|
+ values.
|
|
|
+ weight_decay: the value for the weight decay coefficient.
|
|
|
+
|
|
|
+ Returns:
|
|
|
+ recons: the reconstruction tensor of shape [batch_size, height, width, 3].
|
|
|
+ """
|
|
|
+ with slim.arg_scope(
|
|
|
+ [slim.conv2d, slim.fully_connected],
|
|
|
+ weights_regularizer=slim.l2_regularizer(weight_decay),
|
|
|
+ activation_fn=tf.nn.relu,
|
|
|
+ normalizer_fn=slim.batch_norm,
|
|
|
+ normalizer_params=batch_norm_params):
|
|
|
+ net = slim.fully_connected(codes, 600, scope='fc1')
|
|
|
+ batch_size = net.get_shape().as_list()[0]
|
|
|
+ net = tf.reshape(net, [batch_size, 10, 10, 6])
|
|
|
+
|
|
|
+ net = slim.conv2d(net, 32, [5, 5], scope='conv1_1')
|
|
|
+
|
|
|
+ net = tf.image.resize_nearest_neighbor(net, (16, 16))
|
|
|
+
|
|
|
+ net = slim.conv2d(net, 32, [5, 5], scope='conv2_1')
|
|
|
+
|
|
|
+ net = tf.image.resize_nearest_neighbor(net, (32, 32))
|
|
|
+
|
|
|
+ net = slim.conv2d(net, 32, [5, 5], scope='conv3_2')
|
|
|
+
|
|
|
+ output_size = [height, width]
|
|
|
+ net = tf.image.resize_nearest_neighbor(net, output_size)
|
|
|
+
|
|
|
+ with slim.arg_scope([slim.conv2d], kernel_size=[3, 3]):
|
|
|
+ net = slim.conv2d(net, channels, activation_fn=None, scope='conv4_1')
|
|
|
+
|
|
|
+ return net
|
|
|
+
|
|
|
+
|
|
|
+def gtsrb_decoder(codes,
|
|
|
+ height,
|
|
|
+ width,
|
|
|
+ channels,
|
|
|
+ batch_norm_params=None,
|
|
|
+ weight_decay=0.0):
|
|
|
+ """Decodes the codes to a fixed output size. This decoder is specific to GTSRB
|
|
|
+
|
|
|
+ Args:
|
|
|
+ codes: a tensor of size [batch_size, 100].
|
|
|
+ height: the height of the output images.
|
|
|
+ width: the width of the output images.
|
|
|
+ channels: the number of the output channels.
|
|
|
+ batch_norm_params: a dictionary that maps batch norm parameter names to
|
|
|
+ values.
|
|
|
+ weight_decay: the value for the weight decay coefficient.
|
|
|
+
|
|
|
+ Returns:
|
|
|
+ recons: the reconstruction tensor of shape [batch_size, height, width, 3].
|
|
|
+
|
|
|
+ Raises:
|
|
|
+ ValueError: When the input code size is not 100.
|
|
|
+ """
|
|
|
+ batch_size, code_size = codes.get_shape().as_list()
|
|
|
+ if code_size != 100:
|
|
|
+ raise ValueError('The code size used as an input to the GTSRB decoder is '
|
|
|
+ 'expected to be 100.')
|
|
|
+
|
|
|
+ with slim.arg_scope(
|
|
|
+ [slim.conv2d, slim.fully_connected],
|
|
|
+ weights_regularizer=slim.l2_regularizer(weight_decay),
|
|
|
+ activation_fn=tf.nn.relu,
|
|
|
+ normalizer_fn=slim.batch_norm,
|
|
|
+ normalizer_params=batch_norm_params):
|
|
|
+ net = codes
|
|
|
+ net = tf.reshape(net, [batch_size, 10, 10, 1])
|
|
|
+ net = slim.conv2d(net, 32, [3, 3], scope='conv1_1')
|
|
|
+
|
|
|
+ # First upsampling 20x20
|
|
|
+ net = tf.image.resize_nearest_neighbor(net, [20, 20])
|
|
|
+
|
|
|
+ net = slim.conv2d(net, 32, [3, 3], scope='conv2_1')
|
|
|
+
|
|
|
+ output_size = [height, width]
|
|
|
+ # Final upsampling 40 x 40
|
|
|
+ net = tf.image.resize_nearest_neighbor(net, output_size)
|
|
|
+
|
|
|
+ with slim.arg_scope([slim.conv2d], kernel_size=[3, 3]):
|
|
|
+ net = slim.conv2d(net, 16, scope='conv3_1')
|
|
|
+ net = slim.conv2d(net, channels, activation_fn=None, scope='conv3_2')
|
|
|
+
|
|
|
+ return net
|
|
|
+
|
|
|
+
|
|
|
+def small_decoder(codes,
|
|
|
+ height,
|
|
|
+ width,
|
|
|
+ channels,
|
|
|
+ batch_norm_params=None,
|
|
|
+ weight_decay=0.0):
|
|
|
+ """Decodes the codes to a fixed output size.
|
|
|
+
|
|
|
+ Args:
|
|
|
+ codes: a tensor of size [batch_size, code_size].
|
|
|
+ height: the height of the output images.
|
|
|
+ width: the width of the output images.
|
|
|
+ channels: the number of the output channels.
|
|
|
+ batch_norm_params: a dictionary that maps batch norm parameter names to
|
|
|
+ values.
|
|
|
+ weight_decay: the value for the weight decay coefficient.
|
|
|
+
|
|
|
+ Returns:
|
|
|
+ recons: the reconstruction tensor of shape [batch_size, height, width, 3].
|
|
|
+ """
|
|
|
+ with slim.arg_scope(
|
|
|
+ [slim.conv2d, slim.fully_connected],
|
|
|
+ weights_regularizer=slim.l2_regularizer(weight_decay),
|
|
|
+ activation_fn=tf.nn.relu,
|
|
|
+ normalizer_fn=slim.batch_norm,
|
|
|
+ normalizer_params=batch_norm_params):
|
|
|
+ net = slim.fully_connected(codes, 300, scope='fc1')
|
|
|
+ batch_size = net.get_shape().as_list()[0]
|
|
|
+ net = tf.reshape(net, [batch_size, 10, 10, 3])
|
|
|
+
|
|
|
+ net = slim.conv2d(net, 16, [3, 3], scope='conv1_1')
|
|
|
+ net = slim.conv2d(net, 16, [3, 3], scope='conv1_2')
|
|
|
+
|
|
|
+ output_size = [height, width]
|
|
|
+ net = tf.image.resize_nearest_neighbor(net, output_size)
|
|
|
+
|
|
|
+ with slim.arg_scope([slim.conv2d], kernel_size=[3, 3]):
|
|
|
+ net = slim.conv2d(net, 16, scope='conv2_1')
|
|
|
+ net = slim.conv2d(net, channels, activation_fn=None, scope='conv2_2')
|
|
|
+
|
|
|
+ return net
|
|
|
+
|
|
|
+
|
|
|
+################################################################################
|
|
|
+# SHARED ENCODERS
|
|
|
+################################################################################
|
|
|
+def dann_mnist(images,
|
|
|
+ weight_decay=0.0,
|
|
|
+ prefix='model',
|
|
|
+ num_classes=10,
|
|
|
+ **kwargs):
|
|
|
+ """Creates a convolution MNIST model.
|
|
|
+
|
|
|
+ Note that this model implements the architecture for MNIST proposed in:
|
|
|
+ Y. Ganin et al., Domain-Adversarial Training of Neural Networks (DANN),
|
|
|
+ JMLR 2015
|
|
|
+
|
|
|
+ Args:
|
|
|
+ images: the MNIST digits, a tensor of size [batch_size, 28, 28, 1].
|
|
|
+ weight_decay: the value for the weight decay coefficient.
|
|
|
+ prefix: name of the model to use when prefixing tags.
|
|
|
+ num_classes: the number of output classes to use.
|
|
|
+ **kwargs: Placeholder for keyword arguments used by other shared encoders.
|
|
|
+
|
|
|
+ Returns:
|
|
|
+ the output logits, a tensor of size [batch_size, num_classes].
|
|
|
+ a dictionary with key/values the layer names and tensors.
|
|
|
+ """
|
|
|
+ end_points = {}
|
|
|
+
|
|
|
+ with slim.arg_scope(
|
|
|
+ [slim.conv2d, slim.fully_connected],
|
|
|
+ weights_regularizer=slim.l2_regularizer(weight_decay),
|
|
|
+ activation_fn=tf.nn.relu,):
|
|
|
+ with slim.arg_scope([slim.conv2d], padding='SAME'):
|
|
|
+ end_points['conv1'] = slim.conv2d(images, 32, [5, 5], scope='conv1')
|
|
|
+ end_points['pool1'] = slim.max_pool2d(
|
|
|
+ end_points['conv1'], [2, 2], 2, scope='pool1')
|
|
|
+ end_points['conv2'] = slim.conv2d(
|
|
|
+ end_points['pool1'], 48, [5, 5], scope='conv2')
|
|
|
+ end_points['pool2'] = slim.max_pool2d(
|
|
|
+ end_points['conv2'], [2, 2], 2, scope='pool2')
|
|
|
+ end_points['fc3'] = slim.fully_connected(
|
|
|
+ slim.flatten(end_points['pool2']), 100, scope='fc3')
|
|
|
+ end_points['fc4'] = slim.fully_connected(
|
|
|
+ slim.flatten(end_points['fc3']), 100, scope='fc4')
|
|
|
+
|
|
|
+ logits = slim.fully_connected(
|
|
|
+ end_points['fc4'], num_classes, activation_fn=None, scope='fc5')
|
|
|
+
|
|
|
+ return logits, end_points
|
|
|
+
|
|
|
+
|
|
|
+def dann_svhn(images,
|
|
|
+ weight_decay=0.0,
|
|
|
+ prefix='model',
|
|
|
+ num_classes=10,
|
|
|
+ **kwargs):
|
|
|
+ """Creates the convolutional SVHN model.
|
|
|
+
|
|
|
+ Note that this model implements the architecture for MNIST proposed in:
|
|
|
+ Y. Ganin et al., Domain-Adversarial Training of Neural Networks (DANN),
|
|
|
+ JMLR 2015
|
|
|
+
|
|
|
+ Args:
|
|
|
+ images: the SVHN digits, a tensor of size [batch_size, 32, 32, 3].
|
|
|
+ weight_decay: the value for the weight decay coefficient.
|
|
|
+ prefix: name of the model to use when prefixing tags.
|
|
|
+ num_classes: the number of output classes to use.
|
|
|
+ **kwargs: Placeholder for keyword arguments used by other shared encoders.
|
|
|
+
|
|
|
+ Returns:
|
|
|
+ the output logits, a tensor of size [batch_size, num_classes].
|
|
|
+ a dictionary with key/values the layer names and tensors.
|
|
|
+ """
|
|
|
+
|
|
|
+ end_points = {}
|
|
|
+
|
|
|
+ with slim.arg_scope(
|
|
|
+ [slim.conv2d, slim.fully_connected],
|
|
|
+ weights_regularizer=slim.l2_regularizer(weight_decay),
|
|
|
+ activation_fn=tf.nn.relu,):
|
|
|
+ with slim.arg_scope([slim.conv2d], padding='SAME'):
|
|
|
+
|
|
|
+ end_points['conv1'] = slim.conv2d(images, 64, [5, 5], scope='conv1')
|
|
|
+ end_points['pool1'] = slim.max_pool2d(
|
|
|
+ end_points['conv1'], [3, 3], 2, scope='pool1')
|
|
|
+ end_points['conv2'] = slim.conv2d(
|
|
|
+ end_points['pool1'], 64, [5, 5], scope='conv2')
|
|
|
+ end_points['pool2'] = slim.max_pool2d(
|
|
|
+ end_points['conv2'], [3, 3], 2, scope='pool2')
|
|
|
+ end_points['conv3'] = slim.conv2d(
|
|
|
+ end_points['pool2'], 128, [5, 5], scope='conv3')
|
|
|
+
|
|
|
+ end_points['fc3'] = slim.fully_connected(
|
|
|
+ slim.flatten(end_points['conv3']), 3072, scope='fc3')
|
|
|
+ end_points['fc4'] = slim.fully_connected(
|
|
|
+ slim.flatten(end_points['fc3']), 2048, scope='fc4')
|
|
|
+
|
|
|
+ logits = slim.fully_connected(
|
|
|
+ end_points['fc4'], num_classes, activation_fn=None, scope='fc5')
|
|
|
+
|
|
|
+ return logits, end_points
|
|
|
+
|
|
|
+
|
|
|
+def dann_gtsrb(images,
|
|
|
+ weight_decay=0.0,
|
|
|
+ prefix='model',
|
|
|
+ num_classes=43,
|
|
|
+ **kwargs):
|
|
|
+ """Creates the convolutional GTSRB model.
|
|
|
+
|
|
|
+ Note that this model implements the architecture for MNIST proposed in:
|
|
|
+ Y. Ganin et al., Domain-Adversarial Training of Neural Networks (DANN),
|
|
|
+ JMLR 2015
|
|
|
+
|
|
|
+ Args:
|
|
|
+ images: the GTSRB images, a tensor of size [batch_size, 40, 40, 3].
|
|
|
+ weight_decay: the value for the weight decay coefficient.
|
|
|
+ prefix: name of the model to use when prefixing tags.
|
|
|
+ num_classes: the number of output classes to use.
|
|
|
+ **kwargs: Placeholder for keyword arguments used by other shared encoders.
|
|
|
+
|
|
|
+ Returns:
|
|
|
+ the output logits, a tensor of size [batch_size, num_classes].
|
|
|
+ a dictionary with key/values the layer names and tensors.
|
|
|
+ """
|
|
|
+
|
|
|
+ end_points = {}
|
|
|
+
|
|
|
+ with slim.arg_scope(
|
|
|
+ [slim.conv2d, slim.fully_connected],
|
|
|
+ weights_regularizer=slim.l2_regularizer(weight_decay),
|
|
|
+ activation_fn=tf.nn.relu,):
|
|
|
+ with slim.arg_scope([slim.conv2d], padding='SAME'):
|
|
|
+
|
|
|
+ end_points['conv1'] = slim.conv2d(images, 96, [5, 5], scope='conv1')
|
|
|
+ end_points['pool1'] = slim.max_pool2d(
|
|
|
+ end_points['conv1'], [2, 2], 2, scope='pool1')
|
|
|
+ end_points['conv2'] = slim.conv2d(
|
|
|
+ end_points['pool1'], 144, [3, 3], scope='conv2')
|
|
|
+ end_points['pool2'] = slim.max_pool2d(
|
|
|
+ end_points['conv2'], [2, 2], 2, scope='pool2')
|
|
|
+ end_points['conv3'] = slim.conv2d(
|
|
|
+ end_points['pool2'], 256, [5, 5], scope='conv3')
|
|
|
+ end_points['pool3'] = slim.max_pool2d(
|
|
|
+ end_points['conv3'], [2, 2], 2, scope='pool3')
|
|
|
+
|
|
|
+ end_points['fc3'] = slim.fully_connected(
|
|
|
+ slim.flatten(end_points['pool3']), 512, scope='fc3')
|
|
|
+
|
|
|
+ logits = slim.fully_connected(
|
|
|
+ end_points['fc3'], num_classes, activation_fn=None, scope='fc4')
|
|
|
+
|
|
|
+ return logits, end_points
|
|
|
+
|
|
|
+
|
|
|
+def dsn_cropped_linemod(images,
|
|
|
+ weight_decay=0.0,
|
|
|
+ prefix='model',
|
|
|
+ num_classes=11,
|
|
|
+ batch_norm_params=None,
|
|
|
+ is_training=False):
|
|
|
+ """Creates the convolutional pose estimation model for Cropped Linemod.
|
|
|
+
|
|
|
+ Args:
|
|
|
+ images: the Cropped Linemod samples, a tensor of size
|
|
|
+ [batch_size, 64, 64, 4].
|
|
|
+ weight_decay: the value for the weight decay coefficient.
|
|
|
+ prefix: name of the model to use when prefixing tags.
|
|
|
+ num_classes: the number of output classes to use.
|
|
|
+ batch_norm_params: a dictionary that maps batch norm parameter names to
|
|
|
+ values.
|
|
|
+ is_training: specifies whether or not we're currently training the model.
|
|
|
+ This variable will determine the behaviour of the dropout layer.
|
|
|
+
|
|
|
+ Returns:
|
|
|
+ the output logits, a tensor of size [batch_size, num_classes].
|
|
|
+ a dictionary with key/values the layer names and tensors.
|
|
|
+ """
|
|
|
+
|
|
|
+ end_points = {}
|
|
|
+
|
|
|
+ tf.summary.image('{}/input_images'.format(prefix), images)
|
|
|
+ with slim.arg_scope(
|
|
|
+ [slim.conv2d, slim.fully_connected],
|
|
|
+ weights_regularizer=slim.l2_regularizer(weight_decay),
|
|
|
+ activation_fn=tf.nn.relu,
|
|
|
+ normalizer_fn=slim.batch_norm if batch_norm_params else None,
|
|
|
+ normalizer_params=batch_norm_params):
|
|
|
+ with slim.arg_scope([slim.conv2d], padding='SAME'):
|
|
|
+ end_points['conv1'] = slim.conv2d(images, 32, [5, 5], scope='conv1')
|
|
|
+ end_points['pool1'] = slim.max_pool2d(
|
|
|
+ end_points['conv1'], [2, 2], 2, scope='pool1')
|
|
|
+ end_points['conv2'] = slim.conv2d(
|
|
|
+ end_points['pool1'], 64, [5, 5], scope='conv2')
|
|
|
+ end_points['pool2'] = slim.max_pool2d(
|
|
|
+ end_points['conv2'], [2, 2], 2, scope='pool2')
|
|
|
+ net = slim.flatten(end_points['pool2'])
|
|
|
+ end_points['fc3'] = slim.fully_connected(net, 128, scope='fc3')
|
|
|
+ net = slim.dropout(
|
|
|
+ end_points['fc3'], 0.5, is_training=is_training, scope='dropout')
|
|
|
+
|
|
|
+ with tf.variable_scope('quaternion_prediction'):
|
|
|
+ predicted_quaternion = slim.fully_connected(
|
|
|
+ net, 4, activation_fn=tf.nn.tanh)
|
|
|
+ predicted_quaternion = tf.nn.l2_normalize(predicted_quaternion, 1)
|
|
|
+ logits = slim.fully_connected(
|
|
|
+ net, num_classes, activation_fn=None, scope='fc4')
|
|
|
+ end_points['quaternion_pred'] = predicted_quaternion
|
|
|
+
|
|
|
+ return logits, end_points
|