|
@@ -9,8 +9,9 @@ from autoencoder.autoencoder_models.VariationalAutoencoder import VariationalAut
|
|
|
mnist = input_data.read_data_sets('MNIST_data', one_hot = True)
|
|
|
|
|
|
|
|
|
-def minmax_scale(X_train, X_test):
|
|
|
- preprocessor = prep.MinMaxScaler(feature_range=(0, 1)).fit(X_train)
|
|
|
+
|
|
|
+def min_max_scale(X_train, X_test):
|
|
|
+ preprocessor = prep.MinMaxScaler().fit(X_train)
|
|
|
X_train = preprocessor.transform(X_train)
|
|
|
X_test = preprocessor.transform(X_test)
|
|
|
return X_train, X_test
|
|
@@ -21,7 +22,7 @@ def get_random_block_from_data(data, batch_size):
|
|
|
return data[start_index:(start_index + batch_size)]
|
|
|
|
|
|
|
|
|
-X_train, X_test = minmax_scale(mnist.train.images, mnist.test.images)
|
|
|
+X_train, X_test = min_max_scale(mnist.train.images, mnist.test.images)
|
|
|
|
|
|
n_samples = int(mnist.train.num_examples)
|
|
|
training_epochs = 20
|