|
@@ -158,7 +158,7 @@ def inception_v3_base(inputs,
|
|
|
branch_3 = slim.avg_pool2d(net, [3, 3], scope='AvgPool_0a_3x3')
|
|
|
branch_3 = slim.conv2d(branch_3, depth(32), [1, 1],
|
|
|
scope='Conv2d_0b_1x1')
|
|
|
- net = tf.concat(3, [branch_0, branch_1, branch_2, branch_3])
|
|
|
+ net = tf.concat(axis=3, values=[branch_0, branch_1, branch_2, branch_3])
|
|
|
end_points[end_point] = net
|
|
|
if end_point == final_endpoint: return net, end_points
|
|
|
|
|
@@ -182,7 +182,7 @@ def inception_v3_base(inputs,
|
|
|
branch_3 = slim.avg_pool2d(net, [3, 3], scope='AvgPool_0a_3x3')
|
|
|
branch_3 = slim.conv2d(branch_3, depth(64), [1, 1],
|
|
|
scope='Conv2d_0b_1x1')
|
|
|
- net = tf.concat(3, [branch_0, branch_1, branch_2, branch_3])
|
|
|
+ net = tf.concat(axis=3, values=[branch_0, branch_1, branch_2, branch_3])
|
|
|
end_points[end_point] = net
|
|
|
if end_point == final_endpoint: return net, end_points
|
|
|
|
|
@@ -205,7 +205,7 @@ def inception_v3_base(inputs,
|
|
|
branch_3 = slim.avg_pool2d(net, [3, 3], scope='AvgPool_0a_3x3')
|
|
|
branch_3 = slim.conv2d(branch_3, depth(64), [1, 1],
|
|
|
scope='Conv2d_0b_1x1')
|
|
|
- net = tf.concat(3, [branch_0, branch_1, branch_2, branch_3])
|
|
|
+ net = tf.concat(axis=3, values=[branch_0, branch_1, branch_2, branch_3])
|
|
|
end_points[end_point] = net
|
|
|
if end_point == final_endpoint: return net, end_points
|
|
|
|
|
@@ -224,7 +224,7 @@ def inception_v3_base(inputs,
|
|
|
with tf.variable_scope('Branch_2'):
|
|
|
branch_2 = slim.max_pool2d(net, [3, 3], stride=2, padding='VALID',
|
|
|
scope='MaxPool_1a_3x3')
|
|
|
- net = tf.concat(3, [branch_0, branch_1, branch_2])
|
|
|
+ net = tf.concat(axis=3, values=[branch_0, branch_1, branch_2])
|
|
|
end_points[end_point] = net
|
|
|
if end_point == final_endpoint: return net, end_points
|
|
|
|
|
@@ -253,7 +253,7 @@ def inception_v3_base(inputs,
|
|
|
branch_3 = slim.avg_pool2d(net, [3, 3], scope='AvgPool_0a_3x3')
|
|
|
branch_3 = slim.conv2d(branch_3, depth(192), [1, 1],
|
|
|
scope='Conv2d_0b_1x1')
|
|
|
- net = tf.concat(3, [branch_0, branch_1, branch_2, branch_3])
|
|
|
+ net = tf.concat(axis=3, values=[branch_0, branch_1, branch_2, branch_3])
|
|
|
end_points[end_point] = net
|
|
|
if end_point == final_endpoint: return net, end_points
|
|
|
|
|
@@ -282,7 +282,7 @@ def inception_v3_base(inputs,
|
|
|
branch_3 = slim.avg_pool2d(net, [3, 3], scope='AvgPool_0a_3x3')
|
|
|
branch_3 = slim.conv2d(branch_3, depth(192), [1, 1],
|
|
|
scope='Conv2d_0b_1x1')
|
|
|
- net = tf.concat(3, [branch_0, branch_1, branch_2, branch_3])
|
|
|
+ net = tf.concat(axis=3, values=[branch_0, branch_1, branch_2, branch_3])
|
|
|
end_points[end_point] = net
|
|
|
if end_point == final_endpoint: return net, end_points
|
|
|
# mixed_6: 17 x 17 x 768.
|
|
@@ -310,7 +310,7 @@ def inception_v3_base(inputs,
|
|
|
branch_3 = slim.avg_pool2d(net, [3, 3], scope='AvgPool_0a_3x3')
|
|
|
branch_3 = slim.conv2d(branch_3, depth(192), [1, 1],
|
|
|
scope='Conv2d_0b_1x1')
|
|
|
- net = tf.concat(3, [branch_0, branch_1, branch_2, branch_3])
|
|
|
+ net = tf.concat(axis=3, values=[branch_0, branch_1, branch_2, branch_3])
|
|
|
end_points[end_point] = net
|
|
|
if end_point == final_endpoint: return net, end_points
|
|
|
|
|
@@ -339,7 +339,7 @@ def inception_v3_base(inputs,
|
|
|
branch_3 = slim.avg_pool2d(net, [3, 3], scope='AvgPool_0a_3x3')
|
|
|
branch_3 = slim.conv2d(branch_3, depth(192), [1, 1],
|
|
|
scope='Conv2d_0b_1x1')
|
|
|
- net = tf.concat(3, [branch_0, branch_1, branch_2, branch_3])
|
|
|
+ net = tf.concat(axis=3, values=[branch_0, branch_1, branch_2, branch_3])
|
|
|
end_points[end_point] = net
|
|
|
if end_point == final_endpoint: return net, end_points
|
|
|
|
|
@@ -361,7 +361,7 @@ def inception_v3_base(inputs,
|
|
|
with tf.variable_scope('Branch_2'):
|
|
|
branch_2 = slim.max_pool2d(net, [3, 3], stride=2, padding='VALID',
|
|
|
scope='MaxPool_1a_3x3')
|
|
|
- net = tf.concat(3, [branch_0, branch_1, branch_2])
|
|
|
+ net = tf.concat(axis=3, values=[branch_0, branch_1, branch_2])
|
|
|
end_points[end_point] = net
|
|
|
if end_point == final_endpoint: return net, end_points
|
|
|
# mixed_9: 8 x 8 x 2048.
|
|
@@ -371,21 +371,21 @@ def inception_v3_base(inputs,
|
|
|
branch_0 = slim.conv2d(net, depth(320), [1, 1], scope='Conv2d_0a_1x1')
|
|
|
with tf.variable_scope('Branch_1'):
|
|
|
branch_1 = slim.conv2d(net, depth(384), [1, 1], scope='Conv2d_0a_1x1')
|
|
|
- branch_1 = tf.concat(3, [
|
|
|
+ branch_1 = tf.concat(axis=3, values=[
|
|
|
slim.conv2d(branch_1, depth(384), [1, 3], scope='Conv2d_0b_1x3'),
|
|
|
slim.conv2d(branch_1, depth(384), [3, 1], scope='Conv2d_0b_3x1')])
|
|
|
with tf.variable_scope('Branch_2'):
|
|
|
branch_2 = slim.conv2d(net, depth(448), [1, 1], scope='Conv2d_0a_1x1')
|
|
|
branch_2 = slim.conv2d(
|
|
|
branch_2, depth(384), [3, 3], scope='Conv2d_0b_3x3')
|
|
|
- branch_2 = tf.concat(3, [
|
|
|
+ branch_2 = tf.concat(axis=3, values=[
|
|
|
slim.conv2d(branch_2, depth(384), [1, 3], scope='Conv2d_0c_1x3'),
|
|
|
slim.conv2d(branch_2, depth(384), [3, 1], scope='Conv2d_0d_3x1')])
|
|
|
with tf.variable_scope('Branch_3'):
|
|
|
branch_3 = slim.avg_pool2d(net, [3, 3], scope='AvgPool_0a_3x3')
|
|
|
branch_3 = slim.conv2d(
|
|
|
branch_3, depth(192), [1, 1], scope='Conv2d_0b_1x1')
|
|
|
- net = tf.concat(3, [branch_0, branch_1, branch_2, branch_3])
|
|
|
+ net = tf.concat(axis=3, values=[branch_0, branch_1, branch_2, branch_3])
|
|
|
end_points[end_point] = net
|
|
|
if end_point == final_endpoint: return net, end_points
|
|
|
|
|
@@ -396,21 +396,21 @@ def inception_v3_base(inputs,
|
|
|
branch_0 = slim.conv2d(net, depth(320), [1, 1], scope='Conv2d_0a_1x1')
|
|
|
with tf.variable_scope('Branch_1'):
|
|
|
branch_1 = slim.conv2d(net, depth(384), [1, 1], scope='Conv2d_0a_1x1')
|
|
|
- branch_1 = tf.concat(3, [
|
|
|
+ branch_1 = tf.concat(axis=3, values=[
|
|
|
slim.conv2d(branch_1, depth(384), [1, 3], scope='Conv2d_0b_1x3'),
|
|
|
slim.conv2d(branch_1, depth(384), [3, 1], scope='Conv2d_0c_3x1')])
|
|
|
with tf.variable_scope('Branch_2'):
|
|
|
branch_2 = slim.conv2d(net, depth(448), [1, 1], scope='Conv2d_0a_1x1')
|
|
|
branch_2 = slim.conv2d(
|
|
|
branch_2, depth(384), [3, 3], scope='Conv2d_0b_3x3')
|
|
|
- branch_2 = tf.concat(3, [
|
|
|
+ branch_2 = tf.concat(axis=3, values=[
|
|
|
slim.conv2d(branch_2, depth(384), [1, 3], scope='Conv2d_0c_1x3'),
|
|
|
slim.conv2d(branch_2, depth(384), [3, 1], scope='Conv2d_0d_3x1')])
|
|
|
with tf.variable_scope('Branch_3'):
|
|
|
branch_3 = slim.avg_pool2d(net, [3, 3], scope='AvgPool_0a_3x3')
|
|
|
branch_3 = slim.conv2d(
|
|
|
branch_3, depth(192), [1, 1], scope='Conv2d_0b_1x1')
|
|
|
- net = tf.concat(3, [branch_0, branch_1, branch_2, branch_3])
|
|
|
+ net = tf.concat(axis=3, values=[branch_0, branch_1, branch_2, branch_3])
|
|
|
end_points[end_point] = net
|
|
|
if end_point == final_endpoint: return net, end_points
|
|
|
raise ValueError('Unknown final endpoint %s' % final_endpoint)
|