|
@@ -71,12 +71,14 @@ curl -o cifar-100-binary.tar.gz https://www.cs.toronto.edu/~kriz/cifar-100-binar
|
|
|
```shell
|
|
|
# cd to the your workspace.
|
|
|
# It contains an empty WORKSPACE file, resnet codes and cifar10 dataset.
|
|
|
+# Note: User can split 5k from train set for eval set.
|
|
|
ls -R
|
|
|
.:
|
|
|
cifar10 resnet WORKSPACE
|
|
|
|
|
|
./cifar10:
|
|
|
- test.bin train.bin validation.bin
|
|
|
+ data_batch_1.bin data_batch_2.bin data_batch_3.bin data_batch_4.bin
|
|
|
+ data_batch_5.bin test_batch.bin
|
|
|
|
|
|
./resnet:
|
|
|
BUILD cifar_input.py g3doc README.md resnet_main.py resnet_model.py
|
|
@@ -85,7 +87,7 @@ ls -R
|
|
|
bazel build -c opt --config=cuda resnet/...
|
|
|
|
|
|
# Train the model.
|
|
|
-bazel-bin/resnet/resnet_main --train_data_path=cifar10/train.bin \
|
|
|
+bazel-bin/resnet/resnet_main --train_data_path=cifar10/data_batch* \
|
|
|
--log_root=/tmp/resnet_model \
|
|
|
--train_dir=/tmp/resnet_model/train \
|
|
|
--dataset='cifar10' \
|
|
@@ -94,7 +96,7 @@ bazel-bin/resnet/resnet_main --train_data_path=cifar10/train.bin \
|
|
|
# Evaluate the model.
|
|
|
# Avoid running on the same GPU as the training job at the same time,
|
|
|
# otherwise, you might run out of memory.
|
|
|
-bazel-bin/resnet/resnet_main --eval_data_path=cifar10/test.bin \
|
|
|
+bazel-bin/resnet/resnet_main --eval_data_path=cifar10/test_batch.bin \
|
|
|
--log_root=/tmp/resnet_model \
|
|
|
--eval_dir=/tmp/resnet_model/test \
|
|
|
--mode=eval \
|