|
@@ -61,9 +61,6 @@ def train(hps):
|
|
|
sess = sv.prepare_or_wait_for_session()
|
|
|
|
|
|
step = 0
|
|
|
- total_prediction = 0
|
|
|
- correct_prediction = 0
|
|
|
- precision = 0.0
|
|
|
lrn_rate = 0.1
|
|
|
|
|
|
while not sv.should_stop():
|
|
@@ -81,14 +78,9 @@ def train(hps):
|
|
|
else:
|
|
|
lrn_rate = 0.0001
|
|
|
|
|
|
- predictions = np.argmax(predictions, axis=1)
|
|
|
truth = np.argmax(truth, axis=1)
|
|
|
- for (t, p) in zip(truth, predictions):
|
|
|
- if t == p:
|
|
|
- correct_prediction += 1
|
|
|
- total_prediction += 1
|
|
|
- precision = float(correct_prediction) / total_prediction
|
|
|
- correct_prediction = total_prediction = 0
|
|
|
+ predictions = np.argmax(predictions, axis=1)
|
|
|
+ precision = np.mean(truth == predictions)
|
|
|
|
|
|
step += 1
|
|
|
if step % 100 == 0:
|
|
@@ -135,12 +127,10 @@ def evaluate(hps):
|
|
|
[model.summaries, model.cost, model.predictions,
|
|
|
model.labels, model.global_step])
|
|
|
|
|
|
- best_predictions = np.argmax(predictions, axis=1)
|
|
|
truth = np.argmax(truth, axis=1)
|
|
|
- for (t, p) in zip(truth, best_predictions):
|
|
|
- if t == p:
|
|
|
- correct_prediction += 1
|
|
|
- total_prediction += 1
|
|
|
+ predictions = np.argmax(predictions, axis=1)
|
|
|
+ correct_prediction += np.sum(truth == predictions)
|
|
|
+ total_prediction += predictions.shape[0]
|
|
|
|
|
|
precision = 1.0 * correct_prediction / total_prediction
|
|
|
best_precision = max(precision, best_precision)
|