|
|
@@ -52,11 +52,11 @@ tf.app.flags.DEFINE_boolean('log_device_placement', False,
|
|
|
'Whether to log device placement.')
|
|
|
|
|
|
# Task ID is used to select the chief and also to access the local_step for
|
|
|
-# each replica to check staleness of the gradients in sync_replicas_optimizer.
|
|
|
+# each replica to check staleness of the gradients in SyncReplicasOptimizer.
|
|
|
tf.app.flags.DEFINE_integer(
|
|
|
'task_id', 0, 'Task ID of the worker/replica running the training.')
|
|
|
|
|
|
-# More details can be found in the sync_replicas_optimizer class:
|
|
|
+# More details can be found in the SyncReplicasOptimizer class:
|
|
|
# tensorflow/python/training/sync_replicas_optimizer.py
|
|
|
tf.app.flags.DEFINE_integer('num_replicas_to_aggregate', -1,
|
|
|
"""Number of gradients to collect before """
|
|
|
@@ -222,7 +222,7 @@ def train(target, dataset, cluster_spec):
|
|
|
train_op = tf.identity(total_loss, name='train_op')
|
|
|
|
|
|
# Get chief queue_runners and init_tokens, which is used to synchronize
|
|
|
- # replicas. More details can be found in sync_replicas_optimizer.
|
|
|
+ # replicas. More details can be found in SyncReplicasOptimizer.
|
|
|
chief_queue_runners = [opt.get_chief_queue_runner()]
|
|
|
init_tokens_op = opt.get_init_tokens_op()
|
|
|
|