Przeglądaj źródła

Fix double-pasted README and add code tags around the terminal commands

Neal Wu 8 lat temu
rodzic
commit
f7f9439243
1 zmienionych plików z 11 dodań i 47 usunięć
  1. 11 47
      domain_adaptation/README.md

+ 11 - 47
domain_adaptation/README.md

@@ -25,14 +25,20 @@ Twitter @bousmalis.
 In order to run the MNIST to MNIST-M experiments with DANNs and/or DANNs with
 In order to run the MNIST to MNIST-M experiments with DANNs and/or DANNs with
 domain separation (DSNs) you will need to set the directory you used to download
 domain separation (DSNs) you will need to set the directory you used to download
 MNIST and MNIST-M:\
 MNIST and MNIST-M:\
+
+```
 $ export DSN_DATA_DIR=/your/dir
 $ export DSN_DATA_DIR=/your/dir
+```
 
 
 Then you need to build the binaries with Bazel:
 Then you need to build the binaries with Bazel:
 
 
+```
 $ bazel build -c opt domain_adaptation/domain_separation/...
 $ bazel build -c opt domain_adaptation/domain_separation/...
+```
 
 
 You can then train with the following command:
 You can then train with the following command:
 
 
+```
 $ ./bazel-bin/domain_adaptation/domain_separation/dsn_train  \
 $ ./bazel-bin/domain_adaptation/domain_separation/dsn_train  \
       --similarity_loss=dann_loss  \
       --similarity_loss=dann_loss  \
       --basic_tower=dann_mnist  \
       --basic_tower=dann_mnist  \
@@ -46,55 +52,13 @@ $ ./bazel-bin/domain_adaptation/domain_separation/dsn_train  \
       --master=""  \
       --master=""  \
       --dataset_dir=${DSN_DATA_DIR}  \
       --dataset_dir=${DSN_DATA_DIR}  \
       -v --use_logging
       -v --use_logging
+```
+
 
 
+Evaluation can be invoked with the following command:
 
 
-Evaluation can be invoked with the following command:\
+```
 $ ./bazel-bin/domain_adaptation/domain_separation/dsn_eval  \
 $ ./bazel-bin/domain_adaptation/domain_separation/dsn_eval  \
     -v --dataset mnist_m --split test --num_examples=9001  \
     -v --dataset mnist_m --split test --num_examples=9001  \
     --dataset_dir=${DSN_DATA_DIR}
     --dataset_dir=${DSN_DATA_DIR}
-# Domain Separation Networks
-
-## Introduction
-This code is the code used for the "Domain Separation Networks" paper
-by Bousmalis K., Trigeorgis G., et al. which was presented at NIPS 2016. The
-paper can be found here: https://arxiv.org/abs/1608.06019
-
-## Contact
-This code was open-sourced by Konstantinos Bousmalis (konstantinos@google.com, github:bousmalis)
-
-## Installation
-You will need to have the following installed on your machine before trying out the DSN code.
-
-*  Tensorflow: https://www.tensorflow.org/install/
-*  Bazel: https://bazel.build/
-
-## Running the code for adapting MNIST to MNIST-M
-In order to run the MNIST to MNIST-M experiments with DANNs and/or DANNs with
-domain separation (DSNs) you will need to set the directory you used to download
-MNIST and MNIST-M:\
-$ export DSN_DATA_DIR=/your/dir
-
-Then you need to build the binaries with Bazel:
-
-$ bazel build -c opt domain_adaptation/domain_separation/...
-
-Add models and models/slim to your $PYTHONPATH:
-
-$ export PYTHONPATH=$PYTHONPATH:$PWD/slim\
-$ export PYTHONPATH=$PYTHONPATH:$PWD
-
-You can then train with the following command:
-
-$ ./bazel-bin/domain_adaptation/domain_separation/dsn_train \
-      --similarity_loss=dann_loss  \
-      --basic_tower=dann_mnist  \
-      --source_dataset=mnist  \
-      --target_dataset=mnist_m  \
-      --learning_rate=0.0117249  \
-      --gamma_weight=0.251175  \
-      --weight_decay=1e-6  \
-      --layers_to_regularize=fc3  \
-      --nouse_separation  \
-      --master=""  \
-      --dataset_dir=${DSN_DATA_DIR}  \
-      -v --use_logging
+```