#!/bin/bash # # This script performs the following operations: # 1. Downloads the Cifar10 dataset # 2. Trains a CifarNet model on the Cifar10 training set. # 3. Evaluates the model on the Cifar10 testing set. # # Usage: # cd slim # ./scripts/train_cifar_net_on_mnist.sh # Where the checkpoint and logs will be saved to. TRAIN_DIR=/tmp/cifarnet-model # Where the dataset is saved to. DATASET_DIR=/tmp/cifar10 # Download the dataset python download_and_convert_data.py \ --dataset_name=cifar10 \ --dataset_dir=${DATASET_DIR} # Run training. python train_image_classifier.py \ --train_dir=${TRAIN_DIR} \ --dataset_name=cifar10 \ --dataset_split_name=train \ --dataset_dir=${DATASET_DIR} \ --model_name=cifarnet \ --preprocessing_name=cifarnet \ --max_number_of_steps=100000 \ --batch_size=128 \ --save_interval_secs=120 \ --save_summaries_secs=120 \ --log_every_n_steps=100 \ --optimizer=sgd \ --learning_rate=0.1 \ --learning_rate_decay_factor=0.1 \ --num_epochs_per_decay=200 \ --weight_decay=0.004 # Run evaluation. python eval_image_classifier.py \ --checkpoint_path=${TRAIN_DIR} \ --eval_dir=${TRAIN_DIR} \ --dataset_name=cifar10 \ --dataset_split_name=test \ --dataset_dir=${DATASET_DIR} \ --model_name=cifarnet