#!/bin/bash # # Before running this script, make sure you've followed the instructions for # downloading and converting the MNIST dataset. # See slim/datasets/download_and_convert_mnist.py. # # Usage: # ./slim/scripts/train_lenet_on_mnist.sh # Compile the training and evaluation binaries bazel build slim:train bazel build slim:eval # Where the checkpoint and logs will be saved to. TRAIN_DIR=/tmp/lenet-model # Where the dataset was saved to. DATASET_DIR=/tmp/mnist # Run training. ./bazel-bin/slim/train \ --train_dir=${TRAIN_DIR} \ --dataset_name=mnist \ --dataset_split_name=train \ --dataset_dir=${DATASET_DIR} \ --model_name=lenet \ --preprocessing_name=lenet \ --max_number_of_steps=20000 \ --learning_rate=0.01 \ --save_interval_secs=60 \ --save_summaries_secs=60 \ --optimizer=sgd \ --learning_rate_decay_factor=1.0 --weight_decay=0 # Run evaluation. ./blaze-bin/slim/eval \ --checkpoint_path=${TRAIN_DIR} \ --eval_dir=${TRAIN_DIR} \ --dataset_name=mnist \ --dataset_split_name=test \ --dataset_dir=${DATASET_DIR} \ --model_name=lenet