# NeuralGPU Code for the Neural GPU model as described in [[http://arxiv.org/abs/1511.08228]]. Requirements: * TensorFlow (see tensorflow.org for how to install) * Matplotlib for Python (sudo apt-get install python-matplotlib) The model can be trained on the following algorithmic tasks: * `sort` - Sort a symbol list * `kvsort` - Sort symbol keys in dictionary * `id` - Return the same symbol list * `rev` - Reverse a symbol list * `rev2` - Reverse a symbol dictionary by key * `incr` - Add one to a symbol value * `add` - Long decimal addition * `left` - First symbol in list * `right` - Last symbol in list * `left-shift` - Left shift a symbol list * `right-shift` - Right shift a symbol list * `bmul` - Long binary multiplication * `mul` - Long decimal multiplication * `dup` - Duplicate a symbol list with padding * `badd` - Long binary addition * `qadd` - Long quaternary addition * `search` - Search for symbol key in dictionary The value range for symbols are defined by the `niclass` and `noclass` flags. In particular, the values are in the range `min(--niclass, noclass) - 1`. So if you set `--niclass=33` and `--noclass=33` (the default) then `--task=rev` will be reversing lists of 32 symbols, and `--task=id` will be identity on a list of up to 32 symbols. To train the model on the reverse task run: ``` python neural_gpu_trainer.py --task=rev ``` While training, interim / checkpoint model parameters will be written to `/tmp/neural_gpu/`. Once the amount of error gets down to what you're comfortable with, hit `Ctrl-C` to stop the training process. The latest model parameters will be in `/tmp/neural_gpu/neural_gpu.ckpt-` and used on any subsequent run. To test a trained model on how well it decodes run: ``` python neural_gpu_trainer.py --task=rev --mode=1 ``` To produce an animation of the result run: ``` python neural_gpu_trainer.py --task=rev --mode=1 --animate=True ``` Maintained by Lukasz Kaiser (lukaszkaiser)