#!/bin/bash # # This script performs the following operations: # 1. Downloads the MNIST dataset # 2. Trains a LeNet model on the MNIST training set. # 3. Evaluates the model on the MNIST testing set. # # Usage: # cd slim # ./slim/scripts/train_lenet_on_mnist.sh # Where the checkpoint and logs will be saved to. TRAIN_DIR=/tmp/lenet-model # Where the dataset is saved to. DATASET_DIR=/tmp/mnist # Download the dataset python download_and_convert_data.py \ --dataset_name=mnist \ --dataset_dir=${DATASET_DIR} # Run training. python train_image_classifier.py \ --train_dir=${TRAIN_DIR} \ --dataset_name=mnist \ --dataset_split_name=train \ --dataset_dir=${DATASET_DIR} \ --model_name=lenet \ --preprocessing_name=lenet \ --max_number_of_steps=20000 \ --batch_size=50 \ --learning_rate=0.01 \ --save_interval_secs=60 \ --save_summaries_secs=60 \ --log_every_n_steps=100 \ --optimizer=sgd \ --learning_rate_decay_type=fixed \ --weight_decay=0 # Run evaluation. python eval_image_classifier.py \ --checkpoint_path=${TRAIN_DIR} \ --eval_dir=${TRAIN_DIR} \ --dataset_name=mnist \ --dataset_split_name=test \ --dataset_dir=${DATASET_DIR} \ --model_name=lenet