# dragnn_ops.bulk_fixed_embeddings(handle, embedding_matrix, component=None, pad_to_batch=None, pad_to_steps=None, name=None) ### `dragnn_ops.bulk_fixed_embeddings(handle, embedding_matrix, component=None, pad_to_batch=None, pad_to_steps=None, name=None)` Defined in `tensorflow/dragnn/core/ops/gen_dragnn_bulk_ops.py`. This op is a more efficient version of BulkFixedFeatures to be run with large batch sizes at inference time. The op takes a handle to ComputeSession and embedding matrices as tensor inputs, and directly outputs concatenated embedding vectors. #### Args: * `handle`: A `Tensor` of type `string`. handle to ComputeSession. embedding_matrix (num_channels matrices of float): embedding matrices, each shaped as vocab_dim[channel] x embedding_dim[channel]. * `embedding_matrix`: A list of at least 1 `Tensor` objects of the same type. embedding matrices. * `component`: An optional `string`. Defaults to `""`. * `pad_to_batch`: An optional `int`. Defaults to `-1`. * `pad_to_steps`: An optional `int`. Defaults to `-1`. * `name`: A name for the operation (optional). #### Returns: A tuple of `Tensor` objects (output_handle, embedding_vectors, num_steps). * `output_handle`: A `Tensor` of type `string`. handle to the same ComputeSession after advancement. embedding_vectors (matrix of float): output concatenated embeddings, shaped as (batch * beam * token) x sum_channel(embedding_dim[channel]). num_steps (int32 scalar): batch was unrolled for these many steps. * `embedding_vectors`: A `Tensor`. Has the same type as `embedding_matrix`. * `num_steps`: A `Tensor` of type `int32`.