# dragnn_ops.bulk_fixed_embeddings(handle, embedding_matrix, component=None, pad_to_batch=None, pad_to_steps=None, name=None)
### `dragnn_ops.bulk_fixed_embeddings(handle, embedding_matrix, component=None, pad_to_batch=None, pad_to_steps=None, name=None)`
Defined in `tensorflow/dragnn/core/ops/gen_dragnn_bulk_ops.py`.
This op is a more efficient version of BulkFixedFeatures to be run with large
batch sizes at inference time. The op takes a handle to ComputeSession and
embedding matrices as tensor inputs, and directly outputs concatenated embedding
vectors.
#### Args:
* `handle`: A `Tensor` of type `string`. handle to ComputeSession.
embedding_matrix (num_channels matrices of float): embedding matrices, each
shaped as vocab_dim[channel] x embedding_dim[channel].
* `embedding_matrix`: A list of at least 1 `Tensor` objects of the same
type. embedding matrices.
* `component`: An optional `string`. Defaults to `""`.
* `pad_to_batch`: An optional `int`. Defaults to `-1`.
* `pad_to_steps`: An optional `int`. Defaults to `-1`.
* `name`: A name for the operation (optional).
#### Returns:
A tuple of `Tensor` objects (output_handle, embedding_vectors, num_steps). *
`output_handle`: A `Tensor` of type `string`. handle to the same
ComputeSession after advancement. embedding_vectors (matrix of float): output
concatenated embeddings, shaped as (batch * beam * token) x
sum_channel(embedding_dim[channel]). num_steps (int32 scalar): batch was
unrolled for these many steps. * `embedding_vectors`: A `Tensor`. Has the
same type as `embedding_matrix`. * `num_steps`: A `Tensor` of type
`int32`.