# Copyright 2016 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Converts image data to TFRecords file format with Example protos. The image data set is expected to reside in JPEG files located in the following directory structure. data_dir/label_0/image0.jpeg data_dir/label_0/image1.jpg ... data_dir/label_1/weird-image.jpeg data_dir/label_1/my-image.jpeg ... where the sub-sirectory is the unique label associated with these images. This TensorFlow script converts the training and evaluation data into a sharded data set consisting of TFRecord files train_directory/train-00000-of-01024 train_directory/train-00001-of-01024 ... train_directory/train-00127-of-01024 and validation_directory/validation-00000-of-00128 validation_directory/validation-00001-of-00128 ... validation_directory/validation-00127-of-00128 where we have selected 1024 and 128 shards for each data set. Each record within the TFRecord file is a serialized Example proto. The Example proto contains the following fields: image/encoded: string containing JPEG encoded image in RGB colorspace image/height: integer, image height in pixels image/width: integer, image width in pixels image/colorspace: string, specifying the colorspace, always 'RGB' image/channels: integer, specifying the number of channels, always 3 image/format: string, specifying the format, always'JPEG' image/filename: string containing the basename of the image file e.g. 'n01440764_10026.JPEG' or 'ILSVRC2012_val_00000293.JPEG' image/class/label: integer specifying the index in a classification layer. The label ranges from [0, num_labels] where 0 is unused and left as the background class. image/class/text: string specifying the human-readable version of the label e.g. 'dog' If you data set involves bounding boxes, please look at build_imagenet_data.py. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from datetime import datetime import os import random import sys import threading import numpy as np import tensorflow as tf tf.app.flags.DEFINE_string('train_directory', '/tmp/', 'Training data directory') tf.app.flags.DEFINE_string('validation_directory', '/tmp/', 'Validation data directory') tf.app.flags.DEFINE_string('output_directory', '/tmp/', 'Output data directory') tf.app.flags.DEFINE_integer('train_shards', 2, 'Number of shards in training TFRecord files.') tf.app.flags.DEFINE_integer('validation_shards', 2, 'Number of shards in validation TFRecord files.') tf.app.flags.DEFINE_integer('num_threads', 2, 'Number of threads to preprocess the images.') # The labels file contains a list of valid labels are held in this file. # Assumes that the file contains entries as such: # dog # cat # flower # where each line corresponds to a label. We map each label contained in # the file to an integer corresponding to the line number starting from 0. tf.app.flags.DEFINE_string('labels_file', '', 'Labels file') FLAGS = tf.app.flags.FLAGS def _int64_feature(value): """Wrapper for inserting int64 features into Example proto.""" if not isinstance(value, list): value = [value] return tf.train.Feature(int64_list=tf.train.Int64List(value=value)) def _bytes_feature(value): """Wrapper for inserting bytes features into Example proto.""" return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value])) def _convert_to_example(filename, image_buffer, label, text, height, width): """Build an Example proto for an example. Args: filename: string, path to an image file, e.g., '/path/to/example.JPG' image_buffer: string, JPEG encoding of RGB image label: integer, identifier for the ground truth for the network text: string, unique human-readable, e.g. 'dog' height: integer, image height in pixels width: integer, image width in pixels Returns: Example proto """ colorspace = 'RGB' channels = 3 image_format = 'JPEG' example = tf.train.Example(features=tf.train.Features(feature={ 'image/height': _int64_feature(height), 'image/width': _int64_feature(width), 'image/colorspace': _bytes_feature(colorspace), 'image/channels': _int64_feature(channels), 'image/class/label': _int64_feature(label), 'image/class/text': _bytes_feature(text), 'image/format': _bytes_feature(image_format), 'image/filename': _bytes_feature(os.path.basename(filename)), 'image/encoded': _bytes_feature(image_buffer)})) return example class ImageCoder(object): """Helper class that provides TensorFlow image coding utilities.""" def __init__(self): # Create a single Session to run all image coding calls. self._sess = tf.Session() # Initializes function that converts PNG to JPEG data. self._png_data = tf.placeholder(dtype=tf.string) image = tf.image.decode_png(self._png_data, channels=3) self._png_to_jpeg = tf.image.encode_jpeg(image, format='rgb', quality=100) # Initializes function that decodes RGB JPEG data. self._decode_jpeg_data = tf.placeholder(dtype=tf.string) self._decode_jpeg = tf.image.decode_jpeg(self._decode_jpeg_data, channels=3) def png_to_jpeg(self, image_data): return self._sess.run(self._png_to_jpeg, feed_dict={self._png_data: image_data}) def decode_jpeg(self, image_data): image = self._sess.run(self._decode_jpeg, feed_dict={self._decode_jpeg_data: image_data}) assert len(image.shape) == 3 assert image.shape[2] == 3 return image def _is_png(filename): """Determine if a file contains a PNG format image. Args: filename: string, path of the image file. Returns: boolean indicating if the image is a PNG. """ return '.png' in filename def _process_image(filename, coder): """Process a single image file. Args: filename: string, path to an image file e.g., '/path/to/example.JPG'. coder: instance of ImageCoder to provide TensorFlow image coding utils. Returns: image_buffer: string, JPEG encoding of RGB image. height: integer, image height in pixels. width: integer, image width in pixels. """ # Read the image file. image_data = tf.gfile.FastGFile(filename, 'r').read() # Convert any PNG to JPEG's for consistency. if _is_png(filename): print('Converting PNG to JPEG for %s' % filename) image_data = coder.png_to_jpeg(image_data) # Decode the RGB JPEG. image = coder.decode_jpeg(image_data) # Check that image converted to RGB assert len(image.shape) == 3 height = image.shape[0] width = image.shape[1] assert image.shape[2] == 3 return image_data, height, width def _process_image_files_batch(coder, thread_index, ranges, name, filenames, texts, labels, num_shards): """Processes and saves list of images as TFRecord in 1 thread. Args: coder: instance of ImageCoder to provide TensorFlow image coding utils. thread_index: integer, unique batch to run index is within [0, len(ranges)). ranges: list of pairs of integers specifying ranges of each batches to analyze in parallel. name: string, unique identifier specifying the data set filenames: list of strings; each string is a path to an image file texts: list of strings; each string is human readable, e.g. 'dog' labels: list of integer; each integer identifies the ground truth num_shards: integer number of shards for this data set. """ # Each thread produces N shards where N = int(num_shards / num_threads). # For instance, if num_shards = 128, and the num_threads = 2, then the first # thread would produce shards [0, 64). num_threads = len(ranges) assert not num_shards % num_threads num_shards_per_batch = int(num_shards / num_threads) shard_ranges = np.linspace(ranges[thread_index][0], ranges[thread_index][1], num_shards_per_batch + 1).astype(int) num_files_in_thread = ranges[thread_index][1] - ranges[thread_index][0] counter = 0 for s in xrange(num_shards_per_batch): # Generate a sharded version of the file name, e.g. 'train-00002-of-00010' shard = thread_index * num_shards_per_batch + s output_filename = '%s-%.5d-of-%.5d' % (name, shard, num_shards) output_file = os.path.join(FLAGS.output_directory, output_filename) writer = tf.python_io.TFRecordWriter(output_file) shard_counter = 0 files_in_shard = np.arange(shard_ranges[s], shard_ranges[s + 1], dtype=int) for i in files_in_shard: filename = filenames[i] label = labels[i] text = texts[i] image_buffer, height, width = _process_image(filename, coder) example = _convert_to_example(filename, image_buffer, label, text, height, width) writer.write(example.SerializeToString()) shard_counter += 1 counter += 1 if not counter % 1000: print('%s [thread %d]: Processed %d of %d images in thread batch.' % (datetime.now(), thread_index, counter, num_files_in_thread)) sys.stdout.flush() print('%s [thread %d]: Wrote %d images to %s' % (datetime.now(), thread_index, shard_counter, output_file)) sys.stdout.flush() shard_counter = 0 print('%s [thread %d]: Wrote %d images to %d shards.' % (datetime.now(), thread_index, counter, num_files_in_thread)) sys.stdout.flush() def _process_image_files(name, filenames, texts, labels, num_shards): """Process and save list of images as TFRecord of Example protos. Args: name: string, unique identifier specifying the data set filenames: list of strings; each string is a path to an image file texts: list of strings; each string is human readable, e.g. 'dog' labels: list of integer; each integer identifies the ground truth num_shards: integer number of shards for this data set. """ assert len(filenames) == len(texts) assert len(filenames) == len(labels) # Break all images into batches with a [ranges[i][0], ranges[i][1]]. spacing = np.linspace(0, len(filenames), FLAGS.num_threads + 1).astype(np.int) ranges = [] threads = [] for i in xrange(len(spacing) - 1): ranges.append([spacing[i], spacing[i+1]]) # Launch a thread for each batch. print('Launching %d threads for spacings: %s' % (FLAGS.num_threads, ranges)) sys.stdout.flush() # Create a mechanism for monitoring when all threads are finished. coord = tf.train.Coordinator() # Create a generic TensorFlow-based utility for converting all image codings. coder = ImageCoder() threads = [] for thread_index in xrange(len(ranges)): args = (coder, thread_index, ranges, name, filenames, texts, labels, num_shards) t = threading.Thread(target=_process_image_files_batch, args=args) t.start() threads.append(t) # Wait for all the threads to terminate. coord.join(threads) print('%s: Finished writing all %d images in data set.' % (datetime.now(), len(filenames))) sys.stdout.flush() def _find_image_files(data_dir, labels_file): """Build a list of all images files and labels in the data set. Args: data_dir: string, path to the root directory of images. Assumes that the image data set resides in JPEG files located in the following directory structure. data_dir/dog/another-image.JPEG data_dir/dog/my-image.jpg where 'dog' is the label associated with these images. labels_file: string, path to the labels file. The list of valid labels are held in this file. Assumes that the file contains entries as such: dog cat flower where each line corresponds to a label. We map each label contained in the file to an integer starting with the integer 0 corresponding to the label contained in the first line. Returns: filenames: list of strings; each string is a path to an image file. texts: list of strings; each string is the class, e.g. 'dog' labels: list of integer; each integer identifies the ground truth. """ print('Determining list of input files and labels from %s.' % data_dir) unique_labels = [l.strip() for l in tf.gfile.FastGFile( labels_file, 'r').readlines()] labels = [] filenames = [] texts = [] # Leave label index 0 empty as a background class. label_index = 1 # Construct the list of JPEG files and labels. for text in unique_labels: jpeg_file_path = '%s/%s/*' % (data_dir, text) matching_files = tf.gfile.Glob(jpeg_file_path) labels.extend([label_index] * len(matching_files)) texts.extend([text] * len(matching_files)) filenames.extend(matching_files) if not label_index % 100: print('Finished finding files in %d of %d classes.' % ( label_index, len(labels))) label_index += 1 # Shuffle the ordering of all image files in order to guarantee # random ordering of the images with respect to label in the # saved TFRecord files. Make the randomization repeatable. shuffled_index = range(len(filenames)) random.seed(12345) random.shuffle(shuffled_index) filenames = [filenames[i] for i in shuffled_index] texts = [texts[i] for i in shuffled_index] labels = [labels[i] for i in shuffled_index] print('Found %d JPEG files across %d labels inside %s.' % (len(filenames), len(unique_labels), data_dir)) return filenames, texts, labels def _process_dataset(name, directory, num_shards, labels_file): """Process a complete data set and save it as a TFRecord. Args: name: string, unique identifier specifying the data set. directory: string, root path to the data set. num_shards: integer number of shards for this data set. labels_file: string, path to the labels file. """ filenames, texts, labels = _find_image_files(directory, labels_file) _process_image_files(name, filenames, texts, labels, num_shards) def main(unused_argv): assert not FLAGS.train_shards % FLAGS.num_threads, ( 'Please make the FLAGS.num_threads commensurate with FLAGS.train_shards') assert not FLAGS.validation_shards % FLAGS.num_threads, ( 'Please make the FLAGS.num_threads commensurate with ' 'FLAGS.validation_shards') print('Saving results to %s' % FLAGS.output_directory) # Run it! _process_dataset('validation', FLAGS.validation_directory, FLAGS.validation_shards, FLAGS.labels_file) _process_dataset('train', FLAGS.train_directory, FLAGS.train_shards, FLAGS.labels_file) if __name__ == '__main__': tf.app.run()