# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for shapes.""" import numpy as np import tensorflow as tf import shapes def _rand(*size): return np.random.uniform(size=size).astype('f') class ShapesTest(tf.test.TestCase): """Tests just the shapes from a call to transposing_reshape.""" def __init__(self, other): super(ShapesTest, self).__init__(other) self.batch_size = 4 self.im_height = 24 self.im_width = 36 self.depth = 20 def testReshapeTile(self): """Tests that a tiled input can be reshaped to the batch dimension.""" fake = tf.placeholder( tf.float32, shape=(None, None, None, self.depth), name='inputs') real = _rand(self.batch_size, self.im_height, self.im_width, self.depth) with self.test_session() as sess: outputs = shapes.transposing_reshape( fake, src_dim=2, part_a=3, part_b=-1, dest_dim_a=0, dest_dim_b=2) res_image = sess.run([outputs], feed_dict={fake: real}) self.assertEqual( tuple(res_image[0].shape), (self.batch_size * 3, self.im_height, self.im_width / 3, self.depth)) def testReshapeDepth(self): """Tests that depth can be reshaped to the x dimension.""" fake = tf.placeholder( tf.float32, shape=(None, None, None, self.depth), name='inputs') real = _rand(self.batch_size, self.im_height, self.im_width, self.depth) with self.test_session() as sess: outputs = shapes.transposing_reshape( fake, src_dim=3, part_a=4, part_b=-1, dest_dim_a=2, dest_dim_b=3) res_image = sess.run([outputs], feed_dict={fake: real}) self.assertEqual( tuple(res_image[0].shape), (self.batch_size, self.im_height, self.im_width * 4, self.depth / 4)) class DataTest(tf.test.TestCase): """Tests that the data is moved correctly in a call to transposing_reshape. """ def testTransposingReshape_2_2_3_2_1(self): """Case: dest_a == src, dest_b < src: Split with Least sig part going left. """ with self.test_session() as sess: fake = tf.placeholder( tf.float32, shape=(None, None, None, 2), name='inputs') outputs = shapes.transposing_reshape( fake, src_dim=2, part_a=2, part_b=3, dest_dim_a=2, dest_dim_b=1) # Make real inputs. The tensor looks like this: # tensor=[[[[0, 1][2, 3][4, 5][6, 7][8, 9][10, 11]] # [[12, 13][14, 15][16, 17][18, 19][20, 21][22, 23]] # [[[24, 25]... real = np.arange(120).reshape((5, 2, 6, 2)) np_array = sess.run([outputs], feed_dict={fake: real})[0] self.assertEqual(tuple(np_array.shape), (5, 6, 2, 2)) self.assertAllEqual(np_array[0, :, :, :], [[[0, 1], [6, 7]], [[12, 13], [18, 19]], [[2, 3], [8, 9]], [[14, 15], [20, 21]], [[4, 5], [10, 11]], [[16, 17], [22, 23]]]) def testTransposingReshape_2_2_3_2_3(self): """Case: dest_a == src, dest_b > src: Split with Least sig part going right. """ with self.test_session() as sess: fake = tf.placeholder( tf.float32, shape=(None, None, None, 2), name='inputs') outputs = shapes.transposing_reshape( fake, src_dim=2, part_a=2, part_b=3, dest_dim_a=2, dest_dim_b=3) # Make real inputs. The tensor looks like this: # tensor=[[[[0, 1][2, 3][4, 5][6, 7][8, 9][10, 11]] # [[12, 13][14, 15][16, 17][18, 19][20, 21][22, 23]] # [[[24, 25]... real = np.arange(120).reshape((5, 2, 6, 2)) np_array = sess.run([outputs], feed_dict={fake: real})[0] self.assertEqual(tuple(np_array.shape), (5, 2, 2, 6)) self.assertAllEqual( np_array[0, :, :, :], [[[0, 1, 2, 3, 4, 5], [6, 7, 8, 9, 10, 11]], [[12, 13, 14, 15, 16, 17], [18, 19, 20, 21, 22, 23]]]) def testTransposingReshape_2_2_3_2_2(self): """Case: dest_a == src, dest_b == src. Transpose within dimension 2. """ with self.test_session() as sess: fake = tf.placeholder( tf.float32, shape=(None, None, None, 2), name='inputs') outputs = shapes.transposing_reshape( fake, src_dim=2, part_a=2, part_b=3, dest_dim_a=2, dest_dim_b=2) # Make real inputs. The tensor looks like this: # tensor=[[[[0, 1][2, 3][4, 5][6, 7][8, 9][10, 11]] # [[12, 13][14, 15][16, 17][18, 19][20, 21][22, 23]] # [[[24, 25]... real = np.arange(120).reshape((5, 2, 6, 2)) np_array = sess.run([outputs], feed_dict={fake: real})[0] self.assertEqual(tuple(np_array.shape), (5, 2, 6, 2)) self.assertAllEqual( np_array[0, :, :, :], [[[0, 1], [6, 7], [2, 3], [8, 9], [4, 5], [10, 11]], [[12, 13], [18, 19], [14, 15], [20, 21], [16, 17], [22, 23]]]) def testTransposingReshape_2_2_3_1_2(self): """Case: dest_a < src, dest_b == src. Split with Most sig part going left. """ with self.test_session() as sess: fake = tf.placeholder( tf.float32, shape=(None, None, None, 2), name='inputs') outputs = shapes.transposing_reshape( fake, src_dim=2, part_a=2, part_b=3, dest_dim_a=1, dest_dim_b=2) # Make real inputs. The tensor looks like this: # tensor=[[[[0, 1][2, 3][4, 5][6, 7][8, 9][10, 11]] # [[12, 13][14, 15][16, 17][18, 19][20, 21][22, 23]] # [[[24, 25]... real = np.arange(120).reshape((5, 2, 6, 2)) np_array = sess.run([outputs], feed_dict={fake: real})[0] self.assertEqual(tuple(np_array.shape), (5, 4, 3, 2)) self.assertAllEqual(np_array[0, :, :, :], [[[0, 1], [2, 3], [4, 5]], [[12, 13], [14, 15], [16, 17]], [[6, 7], [8, 9], [10, 11]], [[18, 19], [20, 21], [22, 23]]]) def testTransposingReshape_2_2_3_3_2(self): """Case: dest_a < src, dest_b == src. Split with Most sig part going right. """ with self.test_session() as sess: fake = tf.placeholder( tf.float32, shape=(None, None, None, 2), name='inputs') outputs = shapes.transposing_reshape( fake, src_dim=2, part_a=2, part_b=3, dest_dim_a=3, dest_dim_b=2) # Make real inputs. The tensor looks like this: # tensor=[[[[0, 1][2, 3][4, 5][6, 7][8, 9][10, 11]] # [[12, 13][14, 15][16, 17][18, 19][20, 21][22, 23]] # [[[24, 25]... real = np.arange(120).reshape((5, 2, 6, 2)) np_array = sess.run([outputs], feed_dict={fake: real})[0] self.assertEqual(tuple(np_array.shape), (5, 2, 3, 4)) self.assertAllEqual( np_array[0, :, :, :], [[[0, 1, 6, 7], [2, 3, 8, 9], [4, 5, 10, 11]], [[12, 13, 18, 19], [14, 15, 20, 21], [16, 17, 22, 23]]]) if __name__ == '__main__': tf.test.main()