# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== import tensorflow as tf def transformer(U, theta, out_size, name='SpatialTransformer', **kwargs): """Spatial Transformer Layer Implements a spatial transformer layer as described in [1]_. Based on [2]_ and edited by David Dao for Tensorflow. Parameters ---------- U : float The output of a convolutional net should have the shape [num_batch, height, width, num_channels]. theta: float The output of the localisation network should be [num_batch, 6]. out_size: tuple of two ints The size of the output of the network (height, width) References ---------- .. [1] Spatial Transformer Networks Max Jaderberg, Karen Simonyan, Andrew Zisserman, Koray Kavukcuoglu Submitted on 5 Jun 2015 .. [2] https://github.com/skaae/transformer_network/blob/master/transformerlayer.py Notes ----- To initialize the network to the identity transform init ``theta`` to : identity = np.array([[1., 0., 0.], [0., 1., 0.]]) identity = identity.flatten() theta = tf.Variable(initial_value=identity) """ def _repeat(x, n_repeats): with tf.variable_scope('_repeat'): rep = tf.transpose( tf.expand_dims(tf.ones(shape=tf.stack([n_repeats, ])), 1), [1, 0]) rep = tf.cast(rep, 'int32') x = tf.matmul(tf.reshape(x, (-1, 1)), rep) return tf.reshape(x, [-1]) def _interpolate(im, x, y, out_size): with tf.variable_scope('_interpolate'): # constants num_batch = tf.shape(im)[0] height = tf.shape(im)[1] width = tf.shape(im)[2] channels = tf.shape(im)[3] x = tf.cast(x, 'float32') y = tf.cast(y, 'float32') height_f = tf.cast(height, 'float32') width_f = tf.cast(width, 'float32') out_height = out_size[0] out_width = out_size[1] zero = tf.zeros([], dtype='int32') max_y = tf.cast(tf.shape(im)[1] - 1, 'int32') max_x = tf.cast(tf.shape(im)[2] - 1, 'int32') # scale indices from [-1, 1] to [0, width/height] x = (x + 1.0)*(width_f) / 2.0 y = (y + 1.0)*(height_f) / 2.0 # do sampling x0 = tf.cast(tf.floor(x), 'int32') x1 = x0 + 1 y0 = tf.cast(tf.floor(y), 'int32') y1 = y0 + 1 x0 = tf.clip_by_value(x0, zero, max_x) x1 = tf.clip_by_value(x1, zero, max_x) y0 = tf.clip_by_value(y0, zero, max_y) y1 = tf.clip_by_value(y1, zero, max_y) dim2 = width dim1 = width*height base = _repeat(tf.range(num_batch)*dim1, out_height*out_width) base_y0 = base + y0*dim2 base_y1 = base + y1*dim2 idx_a = base_y0 + x0 idx_b = base_y1 + x0 idx_c = base_y0 + x1 idx_d = base_y1 + x1 # use indices to lookup pixels in the flat image and restore # channels dim im_flat = tf.reshape(im, tf.stack([-1, channels])) im_flat = tf.cast(im_flat, 'float32') Ia = tf.gather(im_flat, idx_a) Ib = tf.gather(im_flat, idx_b) Ic = tf.gather(im_flat, idx_c) Id = tf.gather(im_flat, idx_d) # and finally calculate interpolated values x0_f = tf.cast(x0, 'float32') x1_f = tf.cast(x1, 'float32') y0_f = tf.cast(y0, 'float32') y1_f = tf.cast(y1, 'float32') wa = tf.expand_dims(((x1_f-x) * (y1_f-y)), 1) wb = tf.expand_dims(((x1_f-x) * (y-y0_f)), 1) wc = tf.expand_dims(((x-x0_f) * (y1_f-y)), 1) wd = tf.expand_dims(((x-x0_f) * (y-y0_f)), 1) output = tf.add_n([wa*Ia, wb*Ib, wc*Ic, wd*Id]) return output def _meshgrid(height, width): with tf.variable_scope('_meshgrid'): # This should be equivalent to: # x_t, y_t = np.meshgrid(np.linspace(-1, 1, width), # np.linspace(-1, 1, height)) # ones = np.ones(np.prod(x_t.shape)) # grid = np.vstack([x_t.flatten(), y_t.flatten(), ones]) x_t = tf.matmul(tf.ones(shape=tf.stack([height, 1])), tf.transpose(tf.expand_dims(tf.linspace(-1.0, 1.0, width), 1), [1, 0])) y_t = tf.matmul(tf.expand_dims(tf.linspace(-1.0, 1.0, height), 1), tf.ones(shape=tf.stack([1, width]))) x_t_flat = tf.reshape(x_t, (1, -1)) y_t_flat = tf.reshape(y_t, (1, -1)) ones = tf.ones_like(x_t_flat) grid = tf.concat(axis=0, values=[x_t_flat, y_t_flat, ones]) return grid def _transform(theta, input_dim, out_size): with tf.variable_scope('_transform'): num_batch = tf.shape(input_dim)[0] height = tf.shape(input_dim)[1] width = tf.shape(input_dim)[2] num_channels = tf.shape(input_dim)[3] theta = tf.reshape(theta, (-1, 2, 3)) theta = tf.cast(theta, 'float32') # grid of (x_t, y_t, 1), eq (1) in ref [1] height_f = tf.cast(height, 'float32') width_f = tf.cast(width, 'float32') out_height = out_size[0] out_width = out_size[1] grid = _meshgrid(out_height, out_width) grid = tf.expand_dims(grid, 0) grid = tf.reshape(grid, [-1]) grid = tf.tile(grid, tf.stack([num_batch])) grid = tf.reshape(grid, tf.stack([num_batch, 3, -1])) # Transform A x (x_t, y_t, 1)^T -> (x_s, y_s) T_g = tf.matmul(theta, grid) x_s = tf.slice(T_g, [0, 0, 0], [-1, 1, -1]) y_s = tf.slice(T_g, [0, 1, 0], [-1, 1, -1]) x_s_flat = tf.reshape(x_s, [-1]) y_s_flat = tf.reshape(y_s, [-1]) input_transformed = _interpolate( input_dim, x_s_flat, y_s_flat, out_size) output = tf.reshape( input_transformed, tf.stack([num_batch, out_height, out_width, num_channels])) return output with tf.variable_scope(name): output = _transform(theta, U, out_size) return output def batch_transformer(U, thetas, out_size, name='BatchSpatialTransformer'): """Batch Spatial Transformer Layer Parameters ---------- U : float tensor of inputs [num_batch,height,width,num_channels] thetas : float a set of transformations for each input [num_batch,num_transforms,6] out_size : int the size of the output [out_height,out_width] Returns: float Tensor of size [num_batch*num_transforms,out_height,out_width,num_channels] """ with tf.variable_scope(name): num_batch, num_transforms = map(int, thetas.get_shape().as_list()[:2]) indices = [[i]*num_transforms for i in xrange(num_batch)] input_repeated = tf.gather(U, tf.reshape(indices, [-1])) return transformer(input_repeated, thetas, out_size)