# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Multi-threaded word2vec unbatched skip-gram model. Trains the model described in: (Mikolov, et. al.) Efficient Estimation of Word Representations in Vector Space ICLR 2013. http://arxiv.org/abs/1301.3781 This model does true SGD (i.e. no minibatching). To do this efficiently, custom ops are used to sequentially process data within a 'batch'. The key ops used are: * skipgram custom op that does input processing. * neg_train custom op that efficiently calculates and applies the gradient using true SGD. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import sys import threading import time from six.moves import xrange # pylint: disable=redefined-builtin import numpy as np import tensorflow as tf word2vec = tf.load_op_library(os.path.join(os.path.dirname(os.path.realpath(__file__)), 'word2vec_ops.so')) flags = tf.app.flags flags.DEFINE_string("save_path", None, "Directory to write the model.") flags.DEFINE_string( "train_data", None, "Training data. E.g., unzipped file http://mattmahoney.net/dc/text8.zip.") flags.DEFINE_string( "eval_data", None, "Analogy questions. " "See README.md for how to get 'questions-words.txt'.") flags.DEFINE_integer("embedding_size", 200, "The embedding dimension size.") flags.DEFINE_integer( "epochs_to_train", 15, "Number of epochs to train. Each epoch processes the training data once " "completely.") flags.DEFINE_float("learning_rate", 0.025, "Initial learning rate.") flags.DEFINE_integer("num_neg_samples", 25, "Negative samples per training example.") flags.DEFINE_integer("batch_size", 500, "Numbers of training examples each step processes " "(no minibatching).") flags.DEFINE_integer("concurrent_steps", 12, "The number of concurrent training steps.") flags.DEFINE_integer("window_size", 5, "The number of words to predict to the left and right " "of the target word.") flags.DEFINE_integer("min_count", 5, "The minimum number of word occurrences for it to be " "included in the vocabulary.") flags.DEFINE_float("subsample", 1e-3, "Subsample threshold for word occurrence. Words that appear " "with higher frequency will be randomly down-sampled. Set " "to 0 to disable.") flags.DEFINE_boolean( "interactive", False, "If true, enters an IPython interactive session to play with the trained " "model. E.g., try model.analogy(b'france', b'paris', b'russia') and " "model.nearby([b'proton', b'elephant', b'maxwell'])") FLAGS = flags.FLAGS class Options(object): """Options used by our word2vec model.""" def __init__(self): # Model options. # Embedding dimension. self.emb_dim = FLAGS.embedding_size # Training options. # The training text file. self.train_data = FLAGS.train_data # Number of negative samples per example. self.num_samples = FLAGS.num_neg_samples # The initial learning rate. self.learning_rate = FLAGS.learning_rate # Number of epochs to train. After these many epochs, the learning # rate decays linearly to zero and the training stops. self.epochs_to_train = FLAGS.epochs_to_train # Concurrent training steps. self.concurrent_steps = FLAGS.concurrent_steps # Number of examples for one training step. self.batch_size = FLAGS.batch_size # The number of words to predict to the left and right of the target word. self.window_size = FLAGS.window_size # The minimum number of word occurrences for it to be included in the # vocabulary. self.min_count = FLAGS.min_count # Subsampling threshold for word occurrence. self.subsample = FLAGS.subsample # Where to write out summaries. self.save_path = FLAGS.save_path if not os.path.exists(self.save_path): os.makedirs(self.save_path) # Eval options. # The text file for eval. self.eval_data = FLAGS.eval_data class Word2Vec(object): """Word2Vec model (Skipgram).""" def __init__(self, options, session): self._options = options self._session = session self._word2id = {} self._id2word = [] self.build_graph() self.build_eval_graph() self.save_vocab() def read_analogies(self): """Reads through the analogy question file. Returns: questions: a [n, 4] numpy array containing the analogy question's word ids. questions_skipped: questions skipped due to unknown words. """ questions = [] questions_skipped = 0 with open(self._options.eval_data, "rb") as analogy_f: for line in analogy_f: if line.startswith(b":"): # Skip comments. continue words = line.strip().lower().split(b" ") ids = [self._word2id.get(w.strip()) for w in words] if None in ids or len(ids) != 4: questions_skipped += 1 else: questions.append(np.array(ids)) print("Eval analogy file: ", self._options.eval_data) print("Questions: ", len(questions)) print("Skipped: ", questions_skipped) self._analogy_questions = np.array(questions, dtype=np.int32) def build_graph(self): """Build the model graph.""" opts = self._options # The training data. A text file. (words, counts, words_per_epoch, current_epoch, total_words_processed, examples, labels) = word2vec.skipgram_word2vec(filename=opts.train_data, batch_size=opts.batch_size, window_size=opts.window_size, min_count=opts.min_count, subsample=opts.subsample) (opts.vocab_words, opts.vocab_counts, opts.words_per_epoch) = self._session.run([words, counts, words_per_epoch]) opts.vocab_size = len(opts.vocab_words) print("Data file: ", opts.train_data) print("Vocab size: ", opts.vocab_size - 1, " + UNK") print("Words per epoch: ", opts.words_per_epoch) self._id2word = opts.vocab_words for i, w in enumerate(self._id2word): self._word2id[w] = i # Declare all variables we need. # Input words embedding: [vocab_size, emb_dim] w_in = tf.Variable( tf.random_uniform( [opts.vocab_size, opts.emb_dim], -0.5 / opts.emb_dim, 0.5 / opts.emb_dim), name="w_in") # Global step: scalar, i.e., shape []. w_out = tf.Variable(tf.zeros([opts.vocab_size, opts.emb_dim]), name="w_out") # Global step: [] global_step = tf.Variable(0, name="global_step") # Linear learning rate decay. words_to_train = float(opts.words_per_epoch * opts.epochs_to_train) lr = opts.learning_rate * tf.maximum( 0.0001, 1.0 - tf.cast(total_words_processed, tf.float32) / words_to_train) # Training nodes. inc = global_step.assign_add(1) with tf.control_dependencies([inc]): train = word2vec.neg_train_word2vec(w_in, w_out, examples, labels, lr, vocab_count=opts.vocab_counts.tolist(), num_negative_samples=opts.num_samples) self._w_in = w_in self._examples = examples self._labels = labels self._lr = lr self._train = train self.global_step = global_step self._epoch = current_epoch self._words = total_words_processed def save_vocab(self): """Save the vocabulary to a file so the model can be reloaded.""" opts = self._options with open(os.path.join(opts.save_path, "vocab.txt"), "w") as f: for i in xrange(opts.vocab_size): vocab_word = tf.compat.as_text(opts.vocab_words[i]).encode("utf-8") f.write("%s %d\n" % (vocab_word, opts.vocab_counts[i])) def build_eval_graph(self): """Build the evaluation graph.""" # Eval graph opts = self._options # Each analogy task is to predict the 4th word (d) given three # words: a, b, c. E.g., a=italy, b=rome, c=france, we should # predict d=paris. # The eval feeds three vectors of word ids for a, b, c, each of # which is of size N, where N is the number of analogies we want to # evaluate in one batch. analogy_a = tf.placeholder(dtype=tf.int32) # [N] analogy_b = tf.placeholder(dtype=tf.int32) # [N] analogy_c = tf.placeholder(dtype=tf.int32) # [N] # Normalized word embeddings of shape [vocab_size, emb_dim]. nemb = tf.nn.l2_normalize(self._w_in, 1) # Each row of a_emb, b_emb, c_emb is a word's embedding vector. # They all have the shape [N, emb_dim] a_emb = tf.gather(nemb, analogy_a) # a's embs b_emb = tf.gather(nemb, analogy_b) # b's embs c_emb = tf.gather(nemb, analogy_c) # c's embs # We expect that d's embedding vectors on the unit hyper-sphere is # near: c_emb + (b_emb - a_emb), which has the shape [N, emb_dim]. target = c_emb + (b_emb - a_emb) # Compute cosine distance between each pair of target and vocab. # dist has shape [N, vocab_size]. dist = tf.matmul(target, nemb, transpose_b=True) # For each question (row in dist), find the top 4 words. _, pred_idx = tf.nn.top_k(dist, 4) # Nodes for computing neighbors for a given word according to # their cosine distance. nearby_word = tf.placeholder(dtype=tf.int32) # word id nearby_emb = tf.gather(nemb, nearby_word) nearby_dist = tf.matmul(nearby_emb, nemb, transpose_b=True) nearby_val, nearby_idx = tf.nn.top_k(nearby_dist, min(1000, opts.vocab_size)) # Nodes in the construct graph which are used by training and # evaluation to run/feed/fetch. self._analogy_a = analogy_a self._analogy_b = analogy_b self._analogy_c = analogy_c self._analogy_pred_idx = pred_idx self._nearby_word = nearby_word self._nearby_val = nearby_val self._nearby_idx = nearby_idx # Properly initialize all variables. tf.global_variables_initializer().run() self.saver = tf.train.Saver() def _train_thread_body(self): initial_epoch, = self._session.run([self._epoch]) while True: _, epoch = self._session.run([self._train, self._epoch]) if epoch != initial_epoch: break def train(self): """Train the model.""" opts = self._options initial_epoch, initial_words = self._session.run([self._epoch, self._words]) workers = [] for _ in xrange(opts.concurrent_steps): t = threading.Thread(target=self._train_thread_body) t.start() workers.append(t) last_words, last_time = initial_words, time.time() while True: time.sleep(5) # Reports our progress once a while. (epoch, step, words, lr) = self._session.run( [self._epoch, self.global_step, self._words, self._lr]) now = time.time() last_words, last_time, rate = words, now, (words - last_words) / ( now - last_time) print("Epoch %4d Step %8d: lr = %5.3f words/sec = %8.0f\r" % (epoch, step, lr, rate), end="") sys.stdout.flush() if epoch != initial_epoch: break for t in workers: t.join() def _predict(self, analogy): """Predict the top 4 answers for analogy questions.""" idx, = self._session.run([self._analogy_pred_idx], { self._analogy_a: analogy[:, 0], self._analogy_b: analogy[:, 1], self._analogy_c: analogy[:, 2] }) return idx def eval(self): """Evaluate analogy questions and reports accuracy.""" # How many questions we get right at precision@1. correct = 0 try: total = self._analogy_questions.shape[0] except AttributeError as e: raise AttributeError("Need to read analogy questions.") start = 0 while start < total: limit = start + 2500 sub = self._analogy_questions[start:limit, :] idx = self._predict(sub) start = limit for question in xrange(sub.shape[0]): for j in xrange(4): if idx[question, j] == sub[question, 3]: # Bingo! We predicted correctly. E.g., [italy, rome, france, paris]. correct += 1 break elif idx[question, j] in sub[question, :3]: # We need to skip words already in the question. continue else: # The correct label is not the precision@1 break print() print("Eval %4d/%d accuracy = %4.1f%%" % (correct, total, correct * 100.0 / total)) def analogy(self, w0, w1, w2): """Predict word w3 as in w0:w1 vs w2:w3.""" wid = np.array([[self._word2id.get(w, 0) for w in [w0, w1, w2]]]) idx = self._predict(wid) for c in [self._id2word[i] for i in idx[0, :]]: if c not in [w0, w1, w2]: print(c) break print("unknown") def nearby(self, words, num=20): """Prints out nearby words given a list of words.""" ids = np.array([self._word2id.get(x, 0) for x in words]) vals, idx = self._session.run( [self._nearby_val, self._nearby_idx], {self._nearby_word: ids}) for i in xrange(len(words)): print("\n%s\n=====================================" % (words[i])) for (neighbor, distance) in zip(idx[i, :num], vals[i, :num]): print("%-20s %6.4f" % (self._id2word[neighbor], distance)) def _start_shell(local_ns=None): # An interactive shell is useful for debugging/development. import IPython user_ns = {} if local_ns: user_ns.update(local_ns) user_ns.update(globals()) IPython.start_ipython(argv=[], user_ns=user_ns) def main(_): """Train a word2vec model.""" if not FLAGS.train_data or not FLAGS.eval_data or not FLAGS.save_path: print("--train_data --eval_data and --save_path must be specified.") sys.exit(1) opts = Options() with tf.Graph().as_default(), tf.Session() as session: with tf.device("/cpu:0"): model = Word2Vec(opts, session) model.read_analogies() # Read analogy questions for _ in xrange(opts.epochs_to_train): model.train() # Process one epoch model.eval() # Eval analogies. # Perform a final save. model.saver.save(session, os.path.join(opts.save_path, "model.ckpt"), global_step=model.global_step) if FLAGS.interactive: # E.g., # [0]: model.analogy(b'france', b'paris', b'russia') # [1]: model.nearby([b'proton', b'elephant', b'maxwell']) _start_shell(locals()) if __name__ == "__main__": tf.app.run()