Autoencoder.py 2.2 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061
  1. import tensorflow as tf
  2. import numpy as np
  3. import autoencoder.Utils
  4. class Autoencoder(object):
  5. def __init__(self, n_input, n_hidden, transfer_function=tf.nn.softplus, optimizer = tf.train.AdamOptimizer()):
  6. self.n_input = n_input
  7. self.n_hidden = n_hidden
  8. self.transfer = transfer_function
  9. network_weights = self._initialize_weights()
  10. self.weights = network_weights
  11. # model
  12. self.x = tf.placeholder(tf.float32, [None, self.n_input])
  13. self.hidden = self.transfer(tf.add(tf.matmul(self.x, self.weights['w1']), self.weights['b1']))
  14. self.reconstruction = tf.add(tf.matmul(self.hidden, self.weights['w2']), self.weights['b2'])
  15. # cost
  16. self.cost = 0.5 * tf.reduce_sum(tf.pow(tf.subtract(self.reconstruction, self.x), 2.0))
  17. self.optimizer = optimizer.minimize(self.cost)
  18. init = tf.global_variables_initializer()
  19. self.sess = tf.Session()
  20. self.sess.run(init)
  21. def _initialize_weights(self):
  22. all_weights = dict()
  23. all_weights['w1'] = tf.Variable(autoencoder.Utils.xavier_init(self.n_input, self.n_hidden))
  24. all_weights['b1'] = tf.Variable(tf.zeros([self.n_hidden], dtype=tf.float32))
  25. all_weights['w2'] = tf.Variable(tf.zeros([self.n_hidden, self.n_input], dtype=tf.float32))
  26. all_weights['b2'] = tf.Variable(tf.zeros([self.n_input], dtype=tf.float32))
  27. return all_weights
  28. def partial_fit(self, X):
  29. cost, opt = self.sess.run((self.cost, self.optimizer), feed_dict={self.x: X})
  30. return cost
  31. def calc_total_cost(self, X):
  32. return self.sess.run(self.cost, feed_dict = {self.x: X})
  33. def transform(self, X):
  34. return self.sess.run(self.hidden, feed_dict={self.x: X})
  35. def generate(self, hidden = None):
  36. if hidden is None:
  37. hidden = np.random.normal(size=self.weights["b1"])
  38. return self.sess.run(self.reconstruction, feed_dict={self.hidden: hidden})
  39. def reconstruct(self, X):
  40. return self.sess.run(self.reconstruction, feed_dict={self.x: X})
  41. def getWeights(self):
  42. return self.sess.run(self.weights['w1'])
  43. def getBiases(self):
  44. return self.sess.run(self.weights['b1'])