123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131 |
- import tensorflow as tf
- import numpy as np
- import autoencoder.Utils
- class AdditiveGaussianNoiseAutoencoder(object):
- def __init__(self, n_input, n_hidden, transfer_function = tf.nn.softplus, optimizer = tf.train.AdamOptimizer(),
- scale = 0.1):
- self.n_input = n_input
- self.n_hidden = n_hidden
- self.transfer = transfer_function
- self.scale = tf.placeholder(tf.float32)
- self.training_scale = scale
- network_weights = self._initialize_weights()
- self.weights = network_weights
- # model
- self.x = tf.placeholder(tf.float32, [None, self.n_input])
- self.hidden = self.transfer(tf.add(tf.matmul(self.x + scale * tf.random_normal((n_input,)),
- self.weights['w1']),
- self.weights['b1']))
- self.reconstruction = tf.add(tf.matmul(self.hidden, self.weights['w2']), self.weights['b2'])
- # cost
- self.cost = 0.5 * tf.reduce_sum(tf.pow(tf.subtract(self.reconstruction, self.x), 2.0))
- self.optimizer = optimizer.minimize(self.cost)
- init = tf.global_variables_initializer()
- self.sess = tf.Session()
- self.sess.run(init)
- def _initialize_weights(self):
- all_weights = dict()
- all_weights['w1'] = tf.Variable(autoencoder.Utils.xavier_init(self.n_input, self.n_hidden))
- all_weights['b1'] = tf.Variable(tf.zeros([self.n_hidden], dtype = tf.float32))
- all_weights['w2'] = tf.Variable(tf.zeros([self.n_hidden, self.n_input], dtype = tf.float32))
- all_weights['b2'] = tf.Variable(tf.zeros([self.n_input], dtype = tf.float32))
- return all_weights
- def partial_fit(self, X):
- cost, opt = self.sess.run((self.cost, self.optimizer), feed_dict = {self.x: X,
- self.scale: self.training_scale
- })
- return cost
- def calc_total_cost(self, X):
- return self.sess.run(self.cost, feed_dict = {self.x: X,
- self.scale: self.training_scale
- })
- def transform(self, X):
- return self.sess.run(self.hidden, feed_dict = {self.x: X,
- self.scale: self.training_scale
- })
- def generate(self, hidden = None):
- if hidden is None:
- hidden = np.random.normal(size = self.weights["b1"])
- return self.sess.run(self.reconstruction, feed_dict = {self.hidden: hidden})
- def reconstruct(self, X):
- return self.sess.run(self.reconstruction, feed_dict = {self.x: X,
- self.scale: self.training_scale
- })
- def getWeights(self):
- return self.sess.run(self.weights['w1'])
- def getBiases(self):
- return self.sess.run(self.weights['b1'])
- class MaskingNoiseAutoencoder(object):
- def __init__(self, n_input, n_hidden, transfer_function = tf.nn.softplus, optimizer = tf.train.AdamOptimizer(),
- dropout_probability = 0.95):
- self.n_input = n_input
- self.n_hidden = n_hidden
- self.transfer = transfer_function
- self.dropout_probability = dropout_probability
- self.keep_prob = tf.placeholder(tf.float32)
- network_weights = self._initialize_weights()
- self.weights = network_weights
- # model
- self.x = tf.placeholder(tf.float32, [None, self.n_input])
- self.hidden = self.transfer(tf.add(tf.matmul(tf.nn.dropout(self.x, self.keep_prob), self.weights['w1']),
- self.weights['b1']))
- self.reconstruction = tf.add(tf.matmul(self.hidden, self.weights['w2']), self.weights['b2'])
- # cost
- self.cost = 0.5 * tf.reduce_sum(tf.pow(tf.subtract(self.reconstruction, self.x), 2.0))
- self.optimizer = optimizer.minimize(self.cost)
- init = tf.global_variables_initializer()
- self.sess = tf.Session()
- self.sess.run(init)
- def _initialize_weights(self):
- all_weights = dict()
- all_weights['w1'] = tf.Variable(autoencoder.Utils.xavier_init(self.n_input, self.n_hidden))
- all_weights['b1'] = tf.Variable(tf.zeros([self.n_hidden], dtype = tf.float32))
- all_weights['w2'] = tf.Variable(tf.zeros([self.n_hidden, self.n_input], dtype = tf.float32))
- all_weights['b2'] = tf.Variable(tf.zeros([self.n_input], dtype = tf.float32))
- return all_weights
- def partial_fit(self, X):
- cost, opt = self.sess.run((self.cost, self.optimizer),
- feed_dict = {self.x: X, self.keep_prob: self.dropout_probability})
- return cost
- def calc_total_cost(self, X):
- return self.sess.run(self.cost, feed_dict = {self.x: X, self.keep_prob: 1.0})
- def transform(self, X):
- return self.sess.run(self.hidden, feed_dict = {self.x: X, self.keep_prob: 1.0})
- def generate(self, hidden = None):
- if hidden is None:
- hidden = np.random.normal(size = self.weights["b1"])
- return self.sess.run(self.reconstruction, feed_dict = {self.hidden: hidden})
- def reconstruct(self, X):
- return self.sess.run(self.reconstruction, feed_dict = {self.x: X, self.keep_prob: 1.0})
- def getWeights(self):
- return self.sess.run(self.weights['w1'])
- def getBiases(self):
- return self.sess.run(self.weights['b1'])
|