VariationalAutoencoder.py 2.9 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071
  1. import tensorflow as tf
  2. import numpy as np
  3. import autoencoder.Utils
  4. class VariationalAutoencoder(object):
  5. def __init__(self, n_input, n_hidden, optimizer = tf.train.AdamOptimizer()):
  6. self.n_input = n_input
  7. self.n_hidden = n_hidden
  8. network_weights = self._initialize_weights()
  9. self.weights = network_weights
  10. # model
  11. self.x = tf.placeholder(tf.float32, [None, self.n_input])
  12. self.z_mean = tf.add(tf.matmul(self.x, self.weights['w1']), self.weights['b1'])
  13. self.z_log_sigma_sq = tf.add(tf.matmul(self.x, self.weights['log_sigma_w1']), self.weights['log_sigma_b1'])
  14. # sample from gaussian distribution
  15. eps = tf.random_normal(tf.stack([tf.shape(self.x)[0], self.n_hidden]), 0, 1, dtype = tf.float32)
  16. self.z = tf.add(self.z_mean, tf.multiply(tf.sqrt(tf.exp(self.z_log_sigma_sq)), eps))
  17. self.reconstruction = tf.add(tf.matmul(self.z, self.weights['w2']), self.weights['b2'])
  18. # cost
  19. reconstr_loss = 0.5 * tf.reduce_sum(tf.pow(tf.subtract(self.reconstruction, self.x), 2.0))
  20. latent_loss = -0.5 * tf.reduce_sum(1 + self.z_log_sigma_sq
  21. - tf.square(self.z_mean)
  22. - tf.exp(self.z_log_sigma_sq), 1)
  23. self.cost = tf.reduce_mean(reconstr_loss + latent_loss)
  24. self.optimizer = optimizer.minimize(self.cost)
  25. init = tf.global_variables_initializer()
  26. self.sess = tf.Session()
  27. self.sess.run(init)
  28. def _initialize_weights(self):
  29. all_weights = dict()
  30. all_weights['w1'] = tf.Variable(autoencoder.Utils.xavier_init(self.n_input, self.n_hidden))
  31. all_weights['log_sigma_w1'] = tf.Variable(autoencoder.Utils.xavier_init(self.n_input, self.n_hidden))
  32. all_weights['b1'] = tf.Variable(tf.zeros([self.n_hidden], dtype=tf.float32))
  33. all_weights['log_sigma_b1'] = tf.Variable(tf.zeros([self.n_hidden], dtype=tf.float32))
  34. all_weights['w2'] = tf.Variable(tf.zeros([self.n_hidden, self.n_input], dtype=tf.float32))
  35. all_weights['b2'] = tf.Variable(tf.zeros([self.n_input], dtype=tf.float32))
  36. return all_weights
  37. def partial_fit(self, X):
  38. cost, opt = self.sess.run((self.cost, self.optimizer), feed_dict={self.x: X})
  39. return cost
  40. def calc_total_cost(self, X):
  41. return self.sess.run(self.cost, feed_dict = {self.x: X})
  42. def transform(self, X):
  43. return self.sess.run(self.z_mean, feed_dict={self.x: X})
  44. def generate(self, hidden = None):
  45. if hidden is None:
  46. hidden = np.random.normal(size=self.weights["b1"])
  47. return self.sess.run(self.reconstruction, feed_dict={self.z_mean: hidden})
  48. def reconstruct(self, X):
  49. return self.sess.run(self.reconstruction, feed_dict={self.x: X})
  50. def getWeights(self):
  51. return self.sess.run(self.weights['w1'])
  52. def getBiases(self):
  53. return self.sess.run(self.weights['b1'])