1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586 |
- # Copyright 2016 The TensorFlow Authors All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ==============================================================================
- """Read image sequence."""
- import tensorflow as tf
- def SequenceToImageAndDiff(images):
- """Convert image sequence batch into image and diff batch.
- Each image pair is converted to the first image and their diff.
- Batch size will increase if sequence length is larger than 2.
- Args:
- images: Image sequence with shape
- [batch_size, seq_len, image_size, image_size, channel]
- Returns:
- the list of (image, diff) tuples with shape
- [batch_size2, image_size, image_size, channel]. image_sizes are
- [32, 64, 128, 256].
- """
- image_diff_list = []
- image_seq = tf.unstack(images, axis=1)
- for size in [32, 64, 128, 256]:
- resized_images = [
- tf.image.resize_images(i, [size, size]) for i in image_seq]
- diffs = []
- for i in xrange(0, len(resized_images)-1):
- diffs.append(resized_images[i+1] - resized_images[i])
- image_diff_list.append(
- (tf.concat(axis=0, values=resized_images[:-1]), tf.concat(axis=0, values=diffs)))
- return image_diff_list
- def ReadInput(data_filepattern, shuffle, params):
- """Read the tf.SequenceExample tfrecord files.
- Args:
- data_filepattern: tf.SequenceExample tfrecord filepattern.
- shuffle: Whether to shuffle the examples.
- params: parameter dict.
- Returns:
- image sequence batch [batch_size, seq_len, image_size, image_size, channel].
- """
- image_size = params['image_size']
- filenames = tf.gfile.Glob(data_filepattern)
- filename_queue = tf.train.string_input_producer(filenames, shuffle=shuffle)
- reader = tf.TFRecordReader()
- _, example = reader.read(filename_queue)
- feature_sepc = {
- 'moving_objs': tf.FixedLenSequenceFeature(
- shape=[image_size * image_size * 3], dtype=tf.float32)}
- _, features = tf.parse_single_sequence_example(
- example, sequence_features=feature_sepc)
- moving_objs = tf.reshape(
- features['moving_objs'], [params['seq_len'], image_size, image_size, 3])
- if shuffle:
- examples = tf.train.shuffle_batch(
- [moving_objs],
- batch_size=params['batch_size'],
- num_threads=64,
- capacity=params['batch_size'] * 100,
- min_after_dequeue=params['batch_size'] * 4)
- else:
- examples = tf.train.batch([moving_objs],
- batch_size=params['batch_size'],
- num_threads=16,
- capacity=params['batch_size'])
- examples /= params['norm_scale']
- return examples
|