123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535 |
- # Copyright 2015 The TensorFlow Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ==============================================================================
- """Multi-threaded word2vec mini-batched skip-gram model.
- Trains the model described in:
- (Mikolov, et. al.) Efficient Estimation of Word Representations in Vector Space
- ICLR 2013.
- http://arxiv.org/abs/1301.3781
- This model does traditional minibatching.
- The key ops used are:
- * placeholder for feeding in tensors for each example.
- * embedding_lookup for fetching rows from the embedding matrix.
- * sigmoid_cross_entropy_with_logits to calculate the loss.
- * GradientDescentOptimizer for optimizing the loss.
- * skipgram custom op that does input processing.
- """
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- import os
- import sys
- import threading
- import time
- from six.moves import xrange # pylint: disable=redefined-builtin
- import numpy as np
- import tensorflow as tf
- word2vec = tf.load_op_library(os.path.join(os.path.dirname(os.path.realpath(__file__)), 'word2vec_ops.so'))
- flags = tf.app.flags
- flags.DEFINE_string("save_path", None, "Directory to write the model and "
- "training summaries.")
- flags.DEFINE_string("train_data", None, "Training text file. "
- "E.g., unzipped file http://mattmahoney.net/dc/text8.zip.")
- flags.DEFINE_string(
- "eval_data", None, "File consisting of analogies of four tokens."
- "embedding 2 - embedding 1 + embedding 3 should be close "
- "to embedding 4."
- "See README.md for how to get 'questions-words.txt'.")
- flags.DEFINE_integer("embedding_size", 200, "The embedding dimension size.")
- flags.DEFINE_integer(
- "epochs_to_train", 15,
- "Number of epochs to train. Each epoch processes the training data once "
- "completely.")
- flags.DEFINE_float("learning_rate", 0.2, "Initial learning rate.")
- flags.DEFINE_integer("num_neg_samples", 100,
- "Negative samples per training example.")
- flags.DEFINE_integer("batch_size", 16,
- "Number of training examples processed per step "
- "(size of a minibatch).")
- flags.DEFINE_integer("concurrent_steps", 12,
- "The number of concurrent training steps.")
- flags.DEFINE_integer("window_size", 5,
- "The number of words to predict to the left and right "
- "of the target word.")
- flags.DEFINE_integer("min_count", 5,
- "The minimum number of word occurrences for it to be "
- "included in the vocabulary.")
- flags.DEFINE_float("subsample", 1e-3,
- "Subsample threshold for word occurrence. Words that appear "
- "with higher frequency will be randomly down-sampled. Set "
- "to 0 to disable.")
- flags.DEFINE_boolean(
- "interactive", False,
- "If true, enters an IPython interactive session to play with the trained "
- "model. E.g., try model.analogy(b'france', b'paris', b'russia') and "
- "model.nearby([b'proton', b'elephant', b'maxwell'])")
- flags.DEFINE_integer("statistics_interval", 5,
- "Print statistics every n seconds.")
- flags.DEFINE_integer("summary_interval", 5,
- "Save training summary to file every n seconds (rounded "
- "up to statistics interval).")
- flags.DEFINE_integer("checkpoint_interval", 600,
- "Checkpoint the model (i.e. save the parameters) every n "
- "seconds (rounded up to statistics interval).")
- FLAGS = flags.FLAGS
- class Options(object):
- """Options used by our word2vec model."""
- def __init__(self):
- # Model options.
- # Embedding dimension.
- self.emb_dim = FLAGS.embedding_size
- # Training options.
- # The training text file.
- self.train_data = FLAGS.train_data
- # Number of negative samples per example.
- self.num_samples = FLAGS.num_neg_samples
- # The initial learning rate.
- self.learning_rate = FLAGS.learning_rate
- # Number of epochs to train. After these many epochs, the learning
- # rate decays linearly to zero and the training stops.
- self.epochs_to_train = FLAGS.epochs_to_train
- # Concurrent training steps.
- self.concurrent_steps = FLAGS.concurrent_steps
- # Number of examples for one training step.
- self.batch_size = FLAGS.batch_size
- # The number of words to predict to the left and right of the target word.
- self.window_size = FLAGS.window_size
- # The minimum number of word occurrences for it to be included in the
- # vocabulary.
- self.min_count = FLAGS.min_count
- # Subsampling threshold for word occurrence.
- self.subsample = FLAGS.subsample
- # How often to print statistics.
- self.statistics_interval = FLAGS.statistics_interval
- # How often to write to the summary file (rounds up to the nearest
- # statistics_interval).
- self.summary_interval = FLAGS.summary_interval
- # How often to write checkpoints (rounds up to the nearest statistics
- # interval).
- self.checkpoint_interval = FLAGS.checkpoint_interval
- # Where to write out summaries.
- self.save_path = FLAGS.save_path
- if not os.path.exists(self.save_path):
- os.makedirs(self.save_path)
- # Eval options.
- # The text file for eval.
- self.eval_data = FLAGS.eval_data
- class Word2Vec(object):
- """Word2Vec model (Skipgram)."""
- def __init__(self, options, session):
- self._options = options
- self._session = session
- self._word2id = {}
- self._id2word = []
- self.build_graph()
- self.build_eval_graph()
- self.save_vocab()
- def read_analogies(self):
- """Reads through the analogy question file.
- Returns:
- questions: a [n, 4] numpy array containing the analogy question's
- word ids.
- questions_skipped: questions skipped due to unknown words.
- """
- questions = []
- questions_skipped = 0
- with open(self._options.eval_data, "rb") as analogy_f:
- for line in analogy_f:
- if line.startswith(b":"): # Skip comments.
- continue
- words = line.strip().lower().split(b" ")
- ids = [self._word2id.get(w.strip()) for w in words]
- if None in ids or len(ids) != 4:
- questions_skipped += 1
- else:
- questions.append(np.array(ids))
- print("Eval analogy file: ", self._options.eval_data)
- print("Questions: ", len(questions))
- print("Skipped: ", questions_skipped)
- self._analogy_questions = np.array(questions, dtype=np.int32)
- def forward(self, examples, labels):
- """Build the graph for the forward pass."""
- opts = self._options
- # Declare all variables we need.
- # Embedding: [vocab_size, emb_dim]
- init_width = 0.5 / opts.emb_dim
- emb = tf.Variable(
- tf.random_uniform(
- [opts.vocab_size, opts.emb_dim], -init_width, init_width),
- name="emb")
- self._emb = emb
- # Softmax weight: [vocab_size, emb_dim]. Transposed.
- sm_w_t = tf.Variable(
- tf.zeros([opts.vocab_size, opts.emb_dim]),
- name="sm_w_t")
- # Softmax bias: [emb_dim].
- sm_b = tf.Variable(tf.zeros([opts.vocab_size]), name="sm_b")
- # Global step: scalar, i.e., shape [].
- self.global_step = tf.Variable(0, name="global_step")
- # Nodes to compute the nce loss w/ candidate sampling.
- labels_matrix = tf.reshape(
- tf.cast(labels,
- dtype=tf.int64),
- [opts.batch_size, 1])
- # Negative sampling.
- sampled_ids, _, _ = (tf.nn.fixed_unigram_candidate_sampler(
- true_classes=labels_matrix,
- num_true=1,
- num_sampled=opts.num_samples,
- unique=True,
- range_max=opts.vocab_size,
- distortion=0.75,
- unigrams=opts.vocab_counts.tolist()))
- # Embeddings for examples: [batch_size, emb_dim]
- example_emb = tf.nn.embedding_lookup(emb, examples)
- # Weights for labels: [batch_size, emb_dim]
- true_w = tf.nn.embedding_lookup(sm_w_t, labels)
- # Biases for labels: [batch_size, 1]
- true_b = tf.nn.embedding_lookup(sm_b, labels)
- # Weights for sampled ids: [num_sampled, emb_dim]
- sampled_w = tf.nn.embedding_lookup(sm_w_t, sampled_ids)
- # Biases for sampled ids: [num_sampled, 1]
- sampled_b = tf.nn.embedding_lookup(sm_b, sampled_ids)
- # True logits: [batch_size, 1]
- true_logits = tf.reduce_sum(tf.multiply(example_emb, true_w), 1) + true_b
- # Sampled logits: [batch_size, num_sampled]
- # We replicate sampled noise labels for all examples in the batch
- # using the matmul.
- sampled_b_vec = tf.reshape(sampled_b, [opts.num_samples])
- sampled_logits = tf.matmul(example_emb,
- sampled_w,
- transpose_b=True) + sampled_b_vec
- return true_logits, sampled_logits
- def nce_loss(self, true_logits, sampled_logits):
- """Build the graph for the NCE loss."""
- # cross-entropy(logits, labels)
- opts = self._options
- true_xent = tf.nn.sigmoid_cross_entropy_with_logits(
- labels=tf.ones_like(true_logits), logits=true_logits)
- sampled_xent = tf.nn.sigmoid_cross_entropy_with_logits(
- labels=tf.zeros_like(sampled_logits), logits=sampled_logits)
- # NCE-loss is the sum of the true and noise (sampled words)
- # contributions, averaged over the batch.
- nce_loss_tensor = (tf.reduce_sum(true_xent) +
- tf.reduce_sum(sampled_xent)) / opts.batch_size
- return nce_loss_tensor
- def optimize(self, loss):
- """Build the graph to optimize the loss function."""
- # Optimizer nodes.
- # Linear learning rate decay.
- opts = self._options
- words_to_train = float(opts.words_per_epoch * opts.epochs_to_train)
- lr = opts.learning_rate * tf.maximum(
- 0.0001, 1.0 - tf.cast(self._words, tf.float32) / words_to_train)
- self._lr = lr
- optimizer = tf.train.GradientDescentOptimizer(lr)
- train = optimizer.minimize(loss,
- global_step=self.global_step,
- gate_gradients=optimizer.GATE_NONE)
- self._train = train
- def build_eval_graph(self):
- """Build the eval graph."""
- # Eval graph
- # Each analogy task is to predict the 4th word (d) given three
- # words: a, b, c. E.g., a=italy, b=rome, c=france, we should
- # predict d=paris.
- # The eval feeds three vectors of word ids for a, b, c, each of
- # which is of size N, where N is the number of analogies we want to
- # evaluate in one batch.
- analogy_a = tf.placeholder(dtype=tf.int32) # [N]
- analogy_b = tf.placeholder(dtype=tf.int32) # [N]
- analogy_c = tf.placeholder(dtype=tf.int32) # [N]
- # Normalized word embeddings of shape [vocab_size, emb_dim].
- nemb = tf.nn.l2_normalize(self._emb, 1)
- # Each row of a_emb, b_emb, c_emb is a word's embedding vector.
- # They all have the shape [N, emb_dim]
- a_emb = tf.gather(nemb, analogy_a) # a's embs
- b_emb = tf.gather(nemb, analogy_b) # b's embs
- c_emb = tf.gather(nemb, analogy_c) # c's embs
- # We expect that d's embedding vectors on the unit hyper-sphere is
- # near: c_emb + (b_emb - a_emb), which has the shape [N, emb_dim].
- target = c_emb + (b_emb - a_emb)
- # Compute cosine distance between each pair of target and vocab.
- # dist has shape [N, vocab_size].
- dist = tf.matmul(target, nemb, transpose_b=True)
- # For each question (row in dist), find the top 4 words.
- _, pred_idx = tf.nn.top_k(dist, 4)
- # Nodes for computing neighbors for a given word according to
- # their cosine distance.
- nearby_word = tf.placeholder(dtype=tf.int32) # word id
- nearby_emb = tf.gather(nemb, nearby_word)
- nearby_dist = tf.matmul(nearby_emb, nemb, transpose_b=True)
- nearby_val, nearby_idx = tf.nn.top_k(nearby_dist,
- min(1000, self._options.vocab_size))
- # Nodes in the construct graph which are used by training and
- # evaluation to run/feed/fetch.
- self._analogy_a = analogy_a
- self._analogy_b = analogy_b
- self._analogy_c = analogy_c
- self._analogy_pred_idx = pred_idx
- self._nearby_word = nearby_word
- self._nearby_val = nearby_val
- self._nearby_idx = nearby_idx
- def build_graph(self):
- """Build the graph for the full model."""
- opts = self._options
- # The training data. A text file.
- (words, counts, words_per_epoch, self._epoch, self._words, examples,
- labels) = word2vec.skipgram_word2vec(filename=opts.train_data,
- batch_size=opts.batch_size,
- window_size=opts.window_size,
- min_count=opts.min_count,
- subsample=opts.subsample)
- (opts.vocab_words, opts.vocab_counts,
- opts.words_per_epoch) = self._session.run([words, counts, words_per_epoch])
- opts.vocab_size = len(opts.vocab_words)
- print("Data file: ", opts.train_data)
- print("Vocab size: ", opts.vocab_size - 1, " + UNK")
- print("Words per epoch: ", opts.words_per_epoch)
- self._examples = examples
- self._labels = labels
- self._id2word = opts.vocab_words
- for i, w in enumerate(self._id2word):
- self._word2id[w] = i
- true_logits, sampled_logits = self.forward(examples, labels)
- loss = self.nce_loss(true_logits, sampled_logits)
- tf.summary.scalar("NCE loss", loss)
- self._loss = loss
- self.optimize(loss)
- # Properly initialize all variables.
- tf.global_variables_initializer().run()
- self.saver = tf.train.Saver()
- def save_vocab(self):
- """Save the vocabulary to a file so the model can be reloaded."""
- opts = self._options
- with open(os.path.join(opts.save_path, "vocab.txt"), "w") as f:
- for i in xrange(opts.vocab_size):
- vocab_word = tf.compat.as_text(opts.vocab_words[i]).encode("utf-8")
- f.write("%s %d\n" % (vocab_word,
- opts.vocab_counts[i]))
- def _train_thread_body(self):
- initial_epoch, = self._session.run([self._epoch])
- while True:
- _, epoch = self._session.run([self._train, self._epoch])
- if epoch != initial_epoch:
- break
- def train(self):
- """Train the model."""
- opts = self._options
- initial_epoch, initial_words = self._session.run([self._epoch, self._words])
- summary_op = tf.summary.merge_all()
- summary_writer = tf.summary.FileWriter(opts.save_path, self._session.graph)
- workers = []
- for _ in xrange(opts.concurrent_steps):
- t = threading.Thread(target=self._train_thread_body)
- t.start()
- workers.append(t)
- last_words, last_time, last_summary_time = initial_words, time.time(), 0
- last_checkpoint_time = 0
- while True:
- time.sleep(opts.statistics_interval) # Reports our progress once a while.
- (epoch, step, loss, words, lr) = self._session.run(
- [self._epoch, self.global_step, self._loss, self._words, self._lr])
- now = time.time()
- last_words, last_time, rate = words, now, (words - last_words) / (
- now - last_time)
- print("Epoch %4d Step %8d: lr = %5.3f loss = %6.2f words/sec = %8.0f\r" %
- (epoch, step, lr, loss, rate), end="")
- sys.stdout.flush()
- if now - last_summary_time > opts.summary_interval:
- summary_str = self._session.run(summary_op)
- summary_writer.add_summary(summary_str, step)
- last_summary_time = now
- if now - last_checkpoint_time > opts.checkpoint_interval:
- self.saver.save(self._session,
- os.path.join(opts.save_path, "model.ckpt"),
- global_step=step.astype(int))
- last_checkpoint_time = now
- if epoch != initial_epoch:
- break
- for t in workers:
- t.join()
- return epoch
- def _predict(self, analogy):
- """Predict the top 4 answers for analogy questions."""
- idx, = self._session.run([self._analogy_pred_idx], {
- self._analogy_a: analogy[:, 0],
- self._analogy_b: analogy[:, 1],
- self._analogy_c: analogy[:, 2]
- })
- return idx
- def eval(self):
- """Evaluate analogy questions and reports accuracy."""
- # How many questions we get right at precision@1.
- correct = 0
- try:
- total = self._analogy_questions.shape[0]
- except AttributeError as e:
- raise AttributeError("Need to read analogy questions.")
- start = 0
- while start < total:
- limit = start + 2500
- sub = self._analogy_questions[start:limit, :]
- idx = self._predict(sub)
- start = limit
- for question in xrange(sub.shape[0]):
- for j in xrange(4):
- if idx[question, j] == sub[question, 3]:
- # Bingo! We predicted correctly. E.g., [italy, rome, france, paris].
- correct += 1
- break
- elif idx[question, j] in sub[question, :3]:
- # We need to skip words already in the question.
- continue
- else:
- # The correct label is not the precision@1
- break
- print()
- print("Eval %4d/%d accuracy = %4.1f%%" % (correct, total,
- correct * 100.0 / total))
- def analogy(self, w0, w1, w2):
- """Predict word w3 as in w0:w1 vs w2:w3."""
- wid = np.array([[self._word2id.get(w, 0) for w in [w0, w1, w2]]])
- idx = self._predict(wid)
- for c in [self._id2word[i] for i in idx[0, :]]:
- if c not in [w0, w1, w2]:
- print(c)
- break
- print("unknown")
- def nearby(self, words, num=20):
- """Prints out nearby words given a list of words."""
- ids = np.array([self._word2id.get(x, 0) for x in words])
- vals, idx = self._session.run(
- [self._nearby_val, self._nearby_idx], {self._nearby_word: ids})
- for i in xrange(len(words)):
- print("\n%s\n=====================================" % (words[i]))
- for (neighbor, distance) in zip(idx[i, :num], vals[i, :num]):
- print("%-20s %6.4f" % (self._id2word[neighbor], distance))
- def _start_shell(local_ns=None):
- # An interactive shell is useful for debugging/development.
- import IPython
- user_ns = {}
- if local_ns:
- user_ns.update(local_ns)
- user_ns.update(globals())
- IPython.start_ipython(argv=[], user_ns=user_ns)
- def main(_):
- """Train a word2vec model."""
- if not FLAGS.train_data or not FLAGS.eval_data or not FLAGS.save_path:
- print("--train_data --eval_data and --save_path must be specified.")
- sys.exit(1)
- opts = Options()
- with tf.Graph().as_default(), tf.Session() as session:
- with tf.device("/cpu:0"):
- model = Word2Vec(opts, session)
- model.read_analogies() # Read analogy questions
- for _ in xrange(opts.epochs_to_train):
- model.train() # Process one epoch
- model.eval() # Eval analogies.
- # Perform a final save.
- model.saver.save(session,
- os.path.join(opts.save_path, "model.ckpt"),
- global_step=model.global_step)
- if FLAGS.interactive:
- # E.g.,
- # [0]: model.analogy(b'france', b'paris', b'russia')
- # [1]: model.nearby([b'proton', b'elephant', b'maxwell'])
- _start_shell(locals())
- if __name__ == "__main__":
- tf.app.run()
|