123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272 |
- # Copyright 2015 The TensorFlow Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ==============================================================================
- """A binary to train CIFAR-10 using multiple GPU's with synchronous updates.
- Accuracy:
- cifar10_multi_gpu_train.py achieves ~86% accuracy after 100K steps (256
- epochs of data) as judged by cifar10_eval.py.
- Speed: With batch_size 128.
- System | Step Time (sec/batch) | Accuracy
- --------------------------------------------------------------------
- 1 Tesla K20m | 0.35-0.60 | ~86% at 60K steps (5 hours)
- 1 Tesla K40m | 0.25-0.35 | ~86% at 100K steps (4 hours)
- 2 Tesla K20m | 0.13-0.20 | ~84% at 30K steps (2.5 hours)
- 3 Tesla K20m | 0.13-0.18 | ~84% at 30K steps
- 4 Tesla K20m | ~0.10 | ~84% at 30K steps
- Usage:
- Please see the tutorial and website for how to download the CIFAR-10
- data set, compile the program and train the model.
- http://tensorflow.org/tutorials/deep_cnn/
- """
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- from datetime import datetime
- import os.path
- import re
- import time
- import numpy as np
- from six.moves import xrange # pylint: disable=redefined-builtin
- import tensorflow as tf
- import cifar10
- FLAGS = tf.app.flags.FLAGS
- tf.app.flags.DEFINE_string('train_dir', '/tmp/cifar10_train',
- """Directory where to write event logs """
- """and checkpoint.""")
- tf.app.flags.DEFINE_integer('max_steps', 1000000,
- """Number of batches to run.""")
- tf.app.flags.DEFINE_integer('num_gpus', 1,
- """How many GPUs to use.""")
- tf.app.flags.DEFINE_boolean('log_device_placement', False,
- """Whether to log device placement.""")
- def tower_loss(scope):
- """Calculate the total loss on a single tower running the CIFAR model.
- Args:
- scope: unique prefix string identifying the CIFAR tower, e.g. 'tower_0'
- Returns:
- Tensor of shape [] containing the total loss for a batch of data
- """
- # Get images and labels for CIFAR-10.
- images, labels = cifar10.distorted_inputs()
- # Build inference Graph.
- logits = cifar10.inference(images)
- # Build the portion of the Graph calculating the losses. Note that we will
- # assemble the total_loss using a custom function below.
- _ = cifar10.loss(logits, labels)
- # Assemble all of the losses for the current tower only.
- losses = tf.get_collection('losses', scope)
- # Calculate the total loss for the current tower.
- total_loss = tf.add_n(losses, name='total_loss')
- # Attach a scalar summary to all individual losses and the total loss; do the
- # same for the averaged version of the losses.
- for l in losses + [total_loss]:
- # Remove 'tower_[0-9]/' from the name in case this is a multi-GPU training
- # session. This helps the clarity of presentation on tensorboard.
- loss_name = re.sub('%s_[0-9]*/' % cifar10.TOWER_NAME, '', l.op.name)
- tf.summary.scalar(loss_name, l)
- return total_loss
- def average_gradients(tower_grads):
- """Calculate the average gradient for each shared variable across all towers.
- Note that this function provides a synchronization point across all towers.
- Args:
- tower_grads: List of lists of (gradient, variable) tuples. The outer list
- is over individual gradients. The inner list is over the gradient
- calculation for each tower.
- Returns:
- List of pairs of (gradient, variable) where the gradient has been averaged
- across all towers.
- """
- average_grads = []
- for grad_and_vars in zip(*tower_grads):
- # Note that each grad_and_vars looks like the following:
- # ((grad0_gpu0, var0_gpu0), ... , (grad0_gpuN, var0_gpuN))
- grads = []
- for g, _ in grad_and_vars:
- # Add 0 dimension to the gradients to represent the tower.
- expanded_g = tf.expand_dims(g, 0)
- # Append on a 'tower' dimension which we will average over below.
- grads.append(expanded_g)
- # Average over the 'tower' dimension.
- grad = tf.concat(axis=grads, values=0)
- grad = tf.reduce_mean(grad, 0)
- # Keep in mind that the Variables are redundant because they are shared
- # across towers. So .. we will just return the first tower's pointer to
- # the Variable.
- v = grad_and_vars[0][1]
- grad_and_var = (grad, v)
- average_grads.append(grad_and_var)
- return average_grads
- def train():
- """Train CIFAR-10 for a number of steps."""
- with tf.Graph().as_default(), tf.device('/cpu:0'):
- # Create a variable to count the number of train() calls. This equals the
- # number of batches processed * FLAGS.num_gpus.
- global_step = tf.get_variable(
- 'global_step', [],
- initializer=tf.constant_initializer(0), trainable=False)
- # Calculate the learning rate schedule.
- num_batches_per_epoch = (cifar10.NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN /
- FLAGS.batch_size)
- decay_steps = int(num_batches_per_epoch * cifar10.NUM_EPOCHS_PER_DECAY)
- # Decay the learning rate exponentially based on the number of steps.
- lr = tf.train.exponential_decay(cifar10.INITIAL_LEARNING_RATE,
- global_step,
- decay_steps,
- cifar10.LEARNING_RATE_DECAY_FACTOR,
- staircase=True)
- # Create an optimizer that performs gradient descent.
- opt = tf.train.GradientDescentOptimizer(lr)
- # Calculate the gradients for each model tower.
- tower_grads = []
- with tf.variable_scope(tf.get_variable_scope()):
- for i in xrange(FLAGS.num_gpus):
- with tf.device('/gpu:%d' % i):
- with tf.name_scope('%s_%d' % (cifar10.TOWER_NAME, i)) as scope:
- # Calculate the loss for one tower of the CIFAR model. This function
- # constructs the entire CIFAR model but shares the variables across
- # all towers.
- loss = tower_loss(scope)
- # Reuse variables for the next tower.
- tf.get_variable_scope().reuse_variables()
- # Retain the summaries from the final tower.
- summaries = tf.get_collection(tf.GraphKeys.SUMMARIES, scope)
- # Calculate the gradients for the batch of data on this CIFAR tower.
- grads = opt.compute_gradients(loss)
- # Keep track of the gradients across all towers.
- tower_grads.append(grads)
- # We must calculate the mean of each gradient. Note that this is the
- # synchronization point across all towers.
- grads = average_gradients(tower_grads)
- # Add a summary to track the learning rate.
- summaries.append(tf.summary.scalar('learning_rate', lr))
- # Add histograms for gradients.
- for grad, var in grads:
- if grad is not None:
- summaries.append(tf.summary.histogram(var.op.name + '/gradients', grad))
- # Apply the gradients to adjust the shared variables.
- apply_gradient_op = opt.apply_gradients(grads, global_step=global_step)
- # Add histograms for trainable variables.
- for var in tf.trainable_variables():
- summaries.append(tf.summary.histogram(var.op.name, var))
- # Track the moving averages of all trainable variables.
- variable_averages = tf.train.ExponentialMovingAverage(
- cifar10.MOVING_AVERAGE_DECAY, global_step)
- variables_averages_op = variable_averages.apply(tf.trainable_variables())
- # Group all updates to into a single train op.
- train_op = tf.group(apply_gradient_op, variables_averages_op)
- # Create a saver.
- saver = tf.train.Saver(tf.global_variables())
- # Build the summary operation from the last tower summaries.
- summary_op = tf.summary.merge(summaries)
- # Build an initialization operation to run below.
- init = tf.global_variables_initializer()
- # Start running operations on the Graph. allow_soft_placement must be set to
- # True to build towers on GPU, as some of the ops do not have GPU
- # implementations.
- sess = tf.Session(config=tf.ConfigProto(
- allow_soft_placement=True,
- log_device_placement=FLAGS.log_device_placement))
- sess.run(init)
- # Start the queue runners.
- tf.train.start_queue_runners(sess=sess)
- summary_writer = tf.summary.FileWriter(FLAGS.train_dir, sess.graph)
- for step in xrange(FLAGS.max_steps):
- start_time = time.time()
- _, loss_value = sess.run([train_op, loss])
- duration = time.time() - start_time
- assert not np.isnan(loss_value), 'Model diverged with loss = NaN'
- if step % 10 == 0:
- num_examples_per_step = FLAGS.batch_size * FLAGS.num_gpus
- examples_per_sec = num_examples_per_step / duration
- sec_per_batch = duration / FLAGS.num_gpus
- format_str = ('%s: step %d, loss = %.2f (%.1f examples/sec; %.3f '
- 'sec/batch)')
- print (format_str % (datetime.now(), step, loss_value,
- examples_per_sec, sec_per_batch))
- if step % 100 == 0:
- summary_str = sess.run(summary_op)
- summary_writer.add_summary(summary_str, step)
- # Save the model checkpoint periodically.
- if step % 1000 == 0 or (step + 1) == FLAGS.max_steps:
- checkpoint_path = os.path.join(FLAGS.train_dir, 'model.ckpt')
- saver.save(sess, checkpoint_path, global_step=step)
- def main(argv=None): # pylint: disable=unused-argument
- cifar10.maybe_download_and_extract()
- if tf.gfile.Exists(FLAGS.train_dir):
- tf.gfile.DeleteRecursively(FLAGS.train_dir)
- tf.gfile.MakeDirs(FLAGS.train_dir)
- train()
- if __name__ == '__main__':
- tf.app.run()
|