This repository contains machine learning models implemented in TensorFlow. The models are maintained by their respective authors. To propose a model for inclusion, please submit a pull request.

Chris Shallue 0bd8e24d82 Merge pull request #1217 from cshallue/master 9 лет назад
.github dc7791d01c Create ISSUE_TEMPLATE.md (#124) 9 лет назад
autoencoder 052e5e8b6e Converted the models repo to TF 1.0 using the upgrade script 9 лет назад
compression 052e5e8b6e Converted the models repo to TF 1.0 using the upgrade script 9 лет назад
differential_privacy 5d758ef0f5 Merge pull request #924 from h4ck3rm1k3/master 9 лет назад
im2txt c22611891d Small clarification to documentation 9 лет назад
inception 2e165569de Fix up the inception float comment 9 лет назад
learning_to_remember_rare_events 3f74c7b419 Convert tf.op_scope to tf.name_scope, plus a few other 1.0 upgrade changes 9 лет назад
lm_1b fdc4ce37a4 Fix README 9 лет назад
namignizer 5d758ef0f5 Merge pull request #924 from h4ck3rm1k3/master 9 лет назад
neural_gpu ee017e0dbf Fix two typos 9 лет назад
neural_programmer 5d758ef0f5 Merge pull request #924 from h4ck3rm1k3/master 9 лет назад
next_frame_prediction 052e5e8b6e Converted the models repo to TF 1.0 using the upgrade script 9 лет назад
real_nvp 5c53534305 Manually fixed many occurrences of tf.split 9 лет назад
resnet 64254ad355 Modify the README to reflect changes 9 лет назад
skip_thoughts 8af6f0e283 Update the encoding instructions 9 лет назад
slim 1e01a47493 Rename slim_walkthough.ipynb to slim_walkthrough.ipynb 9 лет назад
street b41ff7f1bf Remove name arguments from tf.summary.scalar 9 лет назад
swivel 3f74c7b419 Convert tf.op_scope to tf.name_scope, plus a few other 1.0 upgrade changes 9 лет назад
syntaxnet e8464d33d3 Update the DRAGNN (#1191) 9 лет назад
textsum 73ae53ac28 Replace old tf.nn modules with 1.0-compatible versions 9 лет назад
transformer 052e5e8b6e Converted the models repo to TF 1.0 using the upgrade script 9 лет назад
tutorials 51fcc99bc6 More clarifications 9 лет назад
video_prediction 211ee00a3b Convert tf.GraphKeys.VARIABLES -> tf.GraphKeys.GLOBAL_VARIABLES 9 лет назад
.gitignore 3e6caf5ff0 Add a .gitignore file. (#164) 9 лет назад
.gitmodules 32ab5a58dd Adding SyntaxNet to tensorflow/models (#63) 9 лет назад
AUTHORS 41c52d60fe Spatial Transformer model 10 лет назад
CONTRIBUTING.md d84df16bc3 fixed contribution guidelines 10 лет назад
LICENSE 7c41e653dc Update LICENSE 10 лет назад
README.md 68609ca78a TF implementation of Skip Thoughts. 9 лет назад
WORKSPACE ac0829fa2b Consolidate privacy/ and differential_privacy/. 9 лет назад

README.md

TensorFlow Models

This repository contains machine learning models implemented in TensorFlow. The models are maintained by their respective authors.

To propose a model for inclusion please submit a pull request.

Models

  • autoencoder: various autoencoders.
  • compression: compressing and decompressing images using a pre-trained Residual GRU network.
  • differential_privacy: privacy-preserving student models from multiple teachers.
  • im2txt: image-to-text neural network for image captioning.
  • inception: deep convolutional networks for computer vision.
  • learning_to_remember_rare_events: a large-scale life-long memory module for use in deep learning.
  • lm_1b: language modeling on the one billion word benchmark.
  • namignizer: recognize and generate names.
  • neural_gpu: highly parallel neural computer.
  • neural_programmer: neural network augmented with logic and mathematic operations.
  • next_frame_prediction: probabilistic future frame synthesis via cross convolutional networks.
  • real_nvp: density estimation using real-valued non-volume preserving (real NVP) transformations.
  • resnet: deep and wide residual networks.
  • skip_thoughts: recurrent neural network sentence-to-vector encoder.
  • slim: image classification models in TF-Slim.
  • street: identify the name of a street (in France) from an image using a Deep RNN.
  • swivel: the Swivel algorithm for generating word embeddings.
  • syntaxnet: neural models of natural language syntax.
  • textsum: sequence-to-sequence with attention model for text summarization.
  • transformer: spatial transformer network, which allows the spatial manipulation of data within the network.
  • tutorials: models described in the TensorFlow tutorials.
  • video_prediction: predicting future video frames with neural advection.