| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100 |
- # Copyright 2017 The TensorFlow Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ==============================================================================
- """Train the skip-thoughts model."""
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- import tensorflow as tf
- from skip_thoughts import configuration
- from skip_thoughts import skip_thoughts_model
- FLAGS = tf.flags.FLAGS
- tf.flags.DEFINE_string("input_file_pattern", None,
- "File pattern of sharded TFRecord files containing "
- "tf.Example protos.")
- tf.flags.DEFINE_string("train_dir", None,
- "Directory for saving and loading checkpoints.")
- tf.logging.set_verbosity(tf.logging.INFO)
- def _setup_learning_rate(config, global_step):
- """Sets up the learning rate with optional exponential decay.
- Args:
- config: Object containing learning rate configuration parameters.
- global_step: Tensor; the global step.
- Returns:
- learning_rate: Tensor; the learning rate with exponential decay.
- """
- if config.learning_rate_decay_factor > 0:
- learning_rate = tf.train.exponential_decay(
- learning_rate=float(config.learning_rate),
- global_step=global_step,
- decay_steps=config.learning_rate_decay_steps,
- decay_rate=config.learning_rate_decay_factor,
- staircase=False)
- else:
- learning_rate = tf.constant(config.learning_rate)
- return learning_rate
- def main(unused_argv):
- if not FLAGS.input_file_pattern:
- raise ValueError("--input_file_pattern is required.")
- if not FLAGS.train_dir:
- raise ValueError("--train_dir is required.")
- model_config = configuration.model_config(
- input_file_pattern=FLAGS.input_file_pattern)
- training_config = configuration.training_config()
- tf.logging.info("Building training graph.")
- g = tf.Graph()
- with g.as_default():
- model = skip_thoughts_model.SkipThoughtsModel(model_config, mode="train")
- model.build()
- learning_rate = _setup_learning_rate(training_config, model.global_step)
- optimizer = tf.train.AdamOptimizer(learning_rate)
- train_tensor = tf.contrib.slim.learning.create_train_op(
- total_loss=model.total_loss,
- optimizer=optimizer,
- global_step=model.global_step,
- clip_gradient_norm=training_config.clip_gradient_norm)
- saver = tf.train.Saver()
- tf.contrib.slim.learning.train(
- train_op=train_tensor,
- logdir=FLAGS.train_dir,
- graph=g,
- global_step=model.global_step,
- number_of_steps=training_config.number_of_steps,
- save_summaries_secs=training_config.save_summaries_secs,
- saver=saver,
- save_interval_secs=training_config.save_model_secs)
- if __name__ == "__main__":
- tf.app.run()
|