123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137 |
- # Copyright 2016 The TensorFlow Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ==============================================================================
- """Tests for slim.inception_resnet_v2."""
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- import tensorflow as tf
- from nets import inception
- class InceptionTest(tf.test.TestCase):
- def testBuildLogits(self):
- batch_size = 5
- height, width = 299, 299
- num_classes = 1000
- with self.test_session():
- inputs = tf.random_uniform((batch_size, height, width, 3))
- logits, _ = inception.inception_resnet_v2(inputs, num_classes)
- self.assertTrue(logits.op.name.startswith('InceptionResnetV2/Logits'))
- self.assertListEqual(logits.get_shape().as_list(),
- [batch_size, num_classes])
- def testBuildEndPoints(self):
- batch_size = 5
- height, width = 299, 299
- num_classes = 1000
- with self.test_session():
- inputs = tf.random_uniform((batch_size, height, width, 3))
- _, end_points = inception.inception_resnet_v2(inputs, num_classes)
- self.assertTrue('Logits' in end_points)
- logits = end_points['Logits']
- self.assertListEqual(logits.get_shape().as_list(),
- [batch_size, num_classes])
- self.assertTrue('AuxLogits' in end_points)
- aux_logits = end_points['AuxLogits']
- self.assertListEqual(aux_logits.get_shape().as_list(),
- [batch_size, num_classes])
- pre_pool = end_points['PrePool']
- self.assertListEqual(pre_pool.get_shape().as_list(),
- [batch_size, 8, 8, 1536])
- def testVariablesSetDevice(self):
- batch_size = 5
- height, width = 299, 299
- num_classes = 1000
- with self.test_session():
- inputs = tf.random_uniform((batch_size, height, width, 3))
- # Force all Variables to reside on the device.
- with tf.variable_scope('on_cpu'), tf.device('/cpu:0'):
- inception.inception_resnet_v2(inputs, num_classes)
- with tf.variable_scope('on_gpu'), tf.device('/gpu:0'):
- inception.inception_resnet_v2(inputs, num_classes)
- for v in tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='on_cpu'):
- self.assertDeviceEqual(v.device, '/cpu:0')
- for v in tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='on_gpu'):
- self.assertDeviceEqual(v.device, '/gpu:0')
- def testHalfSizeImages(self):
- batch_size = 5
- height, width = 150, 150
- num_classes = 1000
- with self.test_session():
- inputs = tf.random_uniform((batch_size, height, width, 3))
- logits, end_points = inception.inception_resnet_v2(inputs, num_classes)
- self.assertTrue(logits.op.name.startswith('InceptionResnetV2/Logits'))
- self.assertListEqual(logits.get_shape().as_list(),
- [batch_size, num_classes])
- pre_pool = end_points['PrePool']
- self.assertListEqual(pre_pool.get_shape().as_list(),
- [batch_size, 3, 3, 1536])
- def testUnknownBatchSize(self):
- batch_size = 1
- height, width = 299, 299
- num_classes = 1000
- with self.test_session() as sess:
- inputs = tf.placeholder(tf.float32, (None, height, width, 3))
- logits, _ = inception.inception_resnet_v2(inputs, num_classes)
- self.assertTrue(logits.op.name.startswith('InceptionResnetV2/Logits'))
- self.assertListEqual(logits.get_shape().as_list(),
- [None, num_classes])
- images = tf.random_uniform((batch_size, height, width, 3))
- sess.run(tf.global_variables_initializer())
- output = sess.run(logits, {inputs: images.eval()})
- self.assertEquals(output.shape, (batch_size, num_classes))
- def testEvaluation(self):
- batch_size = 2
- height, width = 299, 299
- num_classes = 1000
- with self.test_session() as sess:
- eval_inputs = tf.random_uniform((batch_size, height, width, 3))
- logits, _ = inception.inception_resnet_v2(eval_inputs,
- num_classes,
- is_training=False)
- predictions = tf.argmax(logits, 1)
- sess.run(tf.global_variables_initializer())
- output = sess.run(predictions)
- self.assertEquals(output.shape, (batch_size,))
- def testTrainEvalWithReuse(self):
- train_batch_size = 5
- eval_batch_size = 2
- height, width = 150, 150
- num_classes = 1000
- with self.test_session() as sess:
- train_inputs = tf.random_uniform((train_batch_size, height, width, 3))
- inception.inception_resnet_v2(train_inputs, num_classes)
- eval_inputs = tf.random_uniform((eval_batch_size, height, width, 3))
- logits, _ = inception.inception_resnet_v2(eval_inputs,
- num_classes,
- is_training=False,
- reuse=True)
- predictions = tf.argmax(logits, 1)
- sess.run(tf.global_variables_initializer())
- output = sess.run(predictions)
- self.assertEquals(output.shape, (eval_batch_size,))
- if __name__ == '__main__':
- tf.test.main()
|