data_utils.py 8.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261
  1. # Copyright 2015 Google Inc. All Rights Reserved.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. #
  15. #==============================================================================
  16. """Convolutional Gated Recurrent Networks for Algorithm Learning."""
  17. import math
  18. import random
  19. import sys
  20. import time
  21. import google3
  22. import numpy as np
  23. import tensorflow as tf
  24. from google3.third_party.tensorflow.python.platform import gfile
  25. FLAGS = tf.app.flags.FLAGS
  26. bins = [8, 16, 32, 64, 128]
  27. all_tasks = ["sort", "id", "rev", "incr", "left", "right", "left-shift", "add",
  28. "right-shift", "bmul", "dup", "badd", "qadd"]
  29. forward_max = 128
  30. log_filename = ""
  31. def pad(l):
  32. for b in bins:
  33. if b >= l: return b
  34. return forward_max
  35. train_set = {}
  36. test_set = {}
  37. for some_task in all_tasks:
  38. train_set[some_task] = []
  39. test_set[some_task] = []
  40. for all_max_len in xrange(10000):
  41. train_set[some_task].append([])
  42. test_set[some_task].append([])
  43. def add(n1, n2, base=10):
  44. """Add two numbers represented as lower-endian digit lists."""
  45. k = max(len(n1), len(n2)) + 1
  46. d1 = n1 + [0 for _ in xrange(k - len(n1))]
  47. d2 = n2 + [0 for _ in xrange(k - len(n2))]
  48. res = []
  49. carry = 0
  50. for i in xrange(k):
  51. if d1[i] + d2[i] + carry < base:
  52. res.append(d1[i] + d2[i] + carry)
  53. carry = 0
  54. else:
  55. res.append(d1[i] + d2[i] + carry - base)
  56. carry = 1
  57. while res and res[-1] == 0:
  58. res = res[:-1]
  59. if res: return res
  60. return [0]
  61. def init_data(task, length, nbr_cases, nclass):
  62. """Data initialization."""
  63. def rand_pair(l, task):
  64. """Random data pair for a task. Total length should be <= l."""
  65. k = (l-1)/2
  66. base = 10
  67. if task[0] == "b": base = 2
  68. if task[0] == "q": base = 4
  69. d1 = [np.random.randint(base) for _ in xrange(k)]
  70. d2 = [np.random.randint(base) for _ in xrange(k)]
  71. if task in ["add", "badd", "qadd"]:
  72. res = add(d1, d2, base)
  73. elif task in ["bmul"]:
  74. d1n = sum([d * (base ** i) for i, d in enumerate(d1)])
  75. d2n = sum([d * (base ** i) for i, d in enumerate(d2)])
  76. res = [int(x) for x in list(reversed(str(bin(d1n * d2n))))[:-2]]
  77. else:
  78. sys.exit()
  79. sep = [12]
  80. if task in ["add", "badd", "qadd"]: sep = [11]
  81. inp = [d + 1 for d in d1] + sep + [d + 1 for d in d2]
  82. return inp, [r + 1 for r in res]
  83. def rand_dup_pair(l):
  84. """Random data pair for duplication task. Total length should be <= l."""
  85. k = l/2
  86. x = [np.random.randint(nclass - 1) + 1 for _ in xrange(k)]
  87. inp = x + [0 for _ in xrange(l - k)]
  88. res = x + x + [0 for _ in xrange(l - 2*k)]
  89. return inp, res
  90. def spec(inp):
  91. """Return the target given the input for some tasks."""
  92. if task == "sort":
  93. return sorted(inp)
  94. elif task == "id":
  95. return inp
  96. elif task == "rev":
  97. return [i for i in reversed(inp)]
  98. elif task == "incr":
  99. carry = 1
  100. res = []
  101. for i in xrange(len(inp)):
  102. if inp[i] + carry < nclass:
  103. res.append(inp[i] + carry)
  104. carry = 0
  105. else:
  106. res.append(1)
  107. carry = 1
  108. return res
  109. elif task == "left":
  110. return [inp[0]]
  111. elif task == "right":
  112. return [inp[-1]]
  113. elif task == "left-shift":
  114. return [inp[l-1] for l in xrange(len(inp))]
  115. elif task == "right-shift":
  116. return [inp[l+1] for l in xrange(len(inp))]
  117. else:
  118. print_out("Unknown spec for task " + str(task))
  119. sys.exit()
  120. l = length
  121. cur_time = time.time()
  122. total_time = 0.0
  123. for case in xrange(nbr_cases):
  124. total_time += time.time() - cur_time
  125. cur_time = time.time()
  126. if l > 10000 and case % 100 == 1:
  127. print_out(" avg gen time %.4f s" % (total_time / float(case)))
  128. if task in ["add", "badd", "qadd", "bmul"]:
  129. i, t = rand_pair(l, task)
  130. train_set[task][len(i)].append([i, t])
  131. i, t = rand_pair(l, task)
  132. test_set[task][len(i)].append([i, t])
  133. elif task == "dup":
  134. i, t = rand_dup_pair(l)
  135. train_set[task][len(i)].append([i, t])
  136. i, t = rand_dup_pair(l)
  137. test_set[task][len(i)].append([i, t])
  138. else:
  139. inp = [np.random.randint(nclass - 1) + 1 for i in xrange(l)]
  140. target = spec(inp)
  141. train_set[task][l].append([inp, target])
  142. inp = [np.random.randint(nclass - 1) + 1 for i in xrange(l)]
  143. target = spec(inp)
  144. test_set[task][l].append([inp, target])
  145. def get_batch(max_length, batch_size, do_train, task, offset=None, preset=None):
  146. """Get a batch of data, training or testing."""
  147. inputs = []
  148. targets = []
  149. length = max_length
  150. if preset is None:
  151. cur_set = test_set[task]
  152. if do_train: cur_set = train_set[task]
  153. while not cur_set[length]:
  154. length -= 1
  155. pad_length = pad(length)
  156. for b in xrange(batch_size):
  157. if preset is None:
  158. elem = random.choice(cur_set[length])
  159. if offset is not None and offset + b < len(cur_set[length]):
  160. elem = cur_set[length][offset + b]
  161. else:
  162. elem = preset
  163. inp, target = elem[0], elem[1]
  164. assert len(inp) == length
  165. inputs.append(inp + [0 for l in xrange(pad_length - len(inp))])
  166. targets.append(target + [0 for l in xrange(pad_length - len(target))])
  167. res_input = []
  168. res_target = []
  169. for l in xrange(pad_length):
  170. new_input = np.array([inputs[b][l] for b in xrange(batch_size)],
  171. dtype=np.int32)
  172. new_target = np.array([targets[b][l] for b in xrange(batch_size)],
  173. dtype=np.int32)
  174. res_input.append(new_input)
  175. res_target.append(new_target)
  176. return res_input, res_target
  177. def print_out(s, newline=True):
  178. """Print a message out and log it to file."""
  179. if log_filename:
  180. try:
  181. with gfile.GFile(log_filename, mode="a") as f:
  182. f.write(s + ("\n" if newline else ""))
  183. # pylint: disable=bare-except
  184. except:
  185. sys.stdout.write("Error appending to %s\n" % log_filename)
  186. sys.stdout.write(s + ("\n" if newline else ""))
  187. sys.stdout.flush()
  188. def decode(output):
  189. return [np.argmax(o, axis=1) for o in output]
  190. def accuracy(inpt, output, target, batch_size, nprint):
  191. """Calculate output accuracy given target."""
  192. assert nprint < batch_size + 1
  193. def task_print(inp, output, target):
  194. stop_bound = 0
  195. print_len = 0
  196. while print_len < len(target) and target[print_len] > stop_bound:
  197. print_len += 1
  198. print_out(" i: " + " ".join([str(i - 1) for i in inp if i > 0]))
  199. print_out(" o: " +
  200. " ".join([str(output[l] - 1) for l in xrange(print_len)]))
  201. print_out(" t: " +
  202. " ".join([str(target[l] - 1) for l in xrange(print_len)]))
  203. decoded_target = target
  204. decoded_output = decode(output)
  205. total = 0
  206. errors = 0
  207. seq = [0 for b in xrange(batch_size)]
  208. for l in xrange(len(decoded_output)):
  209. for b in xrange(batch_size):
  210. if decoded_target[l][b] > 0:
  211. total += 1
  212. if decoded_output[l][b] != decoded_target[l][b]:
  213. seq[b] = 1
  214. errors += 1
  215. e = 0 # Previous error index
  216. for _ in xrange(min(nprint, sum(seq))):
  217. while seq[e] == 0:
  218. e += 1
  219. task_print([inpt[l][e] for l in xrange(len(inpt))],
  220. [decoded_output[l][e] for l in xrange(len(decoded_target))],
  221. [decoded_target[l][e] for l in xrange(len(decoded_target))])
  222. e += 1
  223. for b in xrange(nprint - errors):
  224. task_print([inpt[l][b] for l in xrange(len(inpt))],
  225. [decoded_output[l][b] for l in xrange(len(decoded_target))],
  226. [decoded_target[l][b] for l in xrange(len(decoded_target))])
  227. return errors, total, sum(seq)
  228. def safe_exp(x):
  229. perp = 10000
  230. if x < 100: perp = math.exp(x)
  231. if perp > 10000: return 10000
  232. return perp