This repository contains machine learning models implemented in TensorFlow. The models are maintained by their respective authors. To propose a model for inclusion, please submit a pull request.

Neal Wu 3c50f47bf8 Merge pull request #1167 from tensorflow/inception-filewriter-fix 9 лет назад
.github dc7791d01c Create ISSUE_TEMPLATE.md (#124) 9 лет назад
autoencoder 052e5e8b6e Converted the models repo to TF 1.0 using the upgrade script 9 лет назад
compression 052e5e8b6e Converted the models repo to TF 1.0 using the upgrade script 9 лет назад
differential_privacy 052e5e8b6e Converted the models repo to TF 1.0 using the upgrade script 9 лет назад
im2txt 00ffa603f2 Manually fixed many occurrences of tf.concat 9 лет назад
inception 2af8c3d2b6 Switch to the new FileWriter API 9 лет назад
learning_to_remember_rare_events 6a9c0da962 add learning to remember rare events 9 лет назад
lm_1b fdc4ce37a4 Fix README 9 лет назад
namignizer 74ae822126 Remove leading space from namignizer code 9 лет назад
neural_gpu 5c53534305 Manually fixed many occurrences of tf.split 9 лет назад
neural_programmer 052e5e8b6e Converted the models repo to TF 1.0 using the upgrade script 9 лет назад
next_frame_prediction 052e5e8b6e Converted the models repo to TF 1.0 using the upgrade script 9 лет назад
real_nvp 5c53534305 Manually fixed many occurrences of tf.split 9 лет назад
resnet 64254ad355 Modify the README to reflect changes 9 лет назад
slim 546fd48ecb Additional upgrades to 1.0 and code fixes 9 лет назад
street b41ff7f1bf Remove name arguments from tf.summary.scalar 9 лет назад
swivel 00ffa603f2 Manually fixed many occurrences of tf.concat 9 лет назад
syntaxnet 00ffa603f2 Manually fixed many occurrences of tf.concat 9 лет назад
textsum 546fd48ecb Additional upgrades to 1.0 and code fixes 9 лет назад
transformer 052e5e8b6e Converted the models repo to TF 1.0 using the upgrade script 9 лет назад
tutorials 0b2c5ba296 Merge pull request #1112 from zym1010/issue1083 9 лет назад
video_prediction 052e5e8b6e Converted the models repo to TF 1.0 using the upgrade script 9 лет назад
.gitignore 3e6caf5ff0 Add a .gitignore file. (#164) 9 лет назад
.gitmodules 32ab5a58dd Adding SyntaxNet to tensorflow/models (#63) 9 лет назад
AUTHORS 41c52d60fe Spatial Transformer model 10 лет назад
CONTRIBUTING.md d84df16bc3 fixed contribution guidelines 10 лет назад
LICENSE 7c41e653dc Update LICENSE 10 лет назад
README.md 727418e4ae One more tiny change 9 лет назад
WORKSPACE ac0829fa2b Consolidate privacy/ and differential_privacy/. 9 лет назад

README.md

TensorFlow Models

This repository contains machine learning models implemented in TensorFlow. The models are maintained by their respective authors.

To propose a model for inclusion please submit a pull request.

Models

  • autoencoder: various autoencoders.
  • compression: compressing and decompressing images using a pre-trained Residual GRU network.
  • differential_privacy: privacy-preserving student models from multiple teachers.
  • im2txt: image-to-text neural network for image captioning.
  • inception: deep convolutional networks for computer vision.
  • learning_to_remember_rare_events: a large-scale life-long memory module for use in deep learning.
  • lm_1b: language modeling on the one billion word benchmark.
  • namignizer: recognize and generate names.
  • neural_gpu: highly parallel neural computer.
  • neural_programmer: neural network augmented with logic and mathematic operations.
  • next_frame_prediction: probabilistic future frame synthesis via cross convolutional networks.
  • real_nvp: density estimation using real-valued non-volume preserving (real NVP) transformations.
  • resnet: deep and wide residual networks.
  • slim: image classification models in TF-Slim.
  • street: identify the name of a street (in France) from an image using a Deep RNN.
  • swivel: the Swivel algorithm for generating word embeddings.
  • syntaxnet: neural models of natural language syntax.
  • textsum: sequence-to-sequence with attention model for text summarization.
  • transformer: spatial transformer network, which allows the spatial manipulation of data within the network.
  • tutorials: models described in the TensorFlow tutorials.
  • video_prediction: predicting future video frames with neural advection.