data_utils.py 8.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273
  1. # Copyright 2015 Google Inc. All Rights Reserved.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ==============================================================================
  15. """Convolutional Gated Recurrent Networks for Algorithm Learning."""
  16. import math
  17. import random
  18. import sys
  19. import time
  20. import numpy as np
  21. import tensorflow as tf
  22. from tensorflow.python.platform import gfile
  23. FLAGS = tf.app.flags.FLAGS
  24. bins = [8, 16, 32, 64, 128]
  25. all_tasks = ["sort", "id", "rev", "incr", "left", "right", "left-shift", "add",
  26. "right-shift", "bmul", "dup", "badd", "qadd"]
  27. forward_max = 128
  28. log_filename = ""
  29. def pad(l):
  30. for b in bins:
  31. if b >= l: return b
  32. return forward_max
  33. train_set = {}
  34. test_set = {}
  35. for some_task in all_tasks:
  36. train_set[some_task] = []
  37. test_set[some_task] = []
  38. for all_max_len in xrange(10000):
  39. train_set[some_task].append([])
  40. test_set[some_task].append([])
  41. def add(n1, n2, base=10):
  42. """Add two numbers represented as lower-endian digit lists."""
  43. k = max(len(n1), len(n2)) + 1
  44. d1 = n1 + [0 for _ in xrange(k - len(n1))]
  45. d2 = n2 + [0 for _ in xrange(k - len(n2))]
  46. res = []
  47. carry = 0
  48. for i in xrange(k):
  49. if d1[i] + d2[i] + carry < base:
  50. res.append(d1[i] + d2[i] + carry)
  51. carry = 0
  52. else:
  53. res.append(d1[i] + d2[i] + carry - base)
  54. carry = 1
  55. while res and res[-1] == 0:
  56. res = res[:-1]
  57. if res: return res
  58. return [0]
  59. def init_data(task, length, nbr_cases, nclass):
  60. """Data initialization."""
  61. def rand_pair(l, task):
  62. """Random data pair for a task. Total length should be <= l."""
  63. k = (l-1)/2
  64. base = 10
  65. if task[0] == "b": base = 2
  66. if task[0] == "q": base = 4
  67. d1 = [np.random.randint(base) for _ in xrange(k)]
  68. d2 = [np.random.randint(base) for _ in xrange(k)]
  69. if task in ["add", "badd", "qadd"]:
  70. res = add(d1, d2, base)
  71. elif task in ["bmul"]:
  72. d1n = sum([d * (base ** i) for i, d in enumerate(d1)])
  73. d2n = sum([d * (base ** i) for i, d in enumerate(d2)])
  74. res = [int(x) for x in list(reversed(str(bin(d1n * d2n))))[:-2]]
  75. else:
  76. sys.exit()
  77. sep = [12]
  78. if task in ["add", "badd", "qadd"]: sep = [11]
  79. inp = [d + 1 for d in d1] + sep + [d + 1 for d in d2]
  80. return inp, [r + 1 for r in res]
  81. def rand_dup_pair(l):
  82. """Random data pair for duplication task. Total length should be <= l."""
  83. k = l/2
  84. x = [np.random.randint(nclass - 1) + 1 for _ in xrange(k)]
  85. inp = x + [0 for _ in xrange(l - k)]
  86. res = x + x + [0 for _ in xrange(l - 2*k)]
  87. return inp, res
  88. def spec(inp):
  89. """Return the target given the input for some tasks."""
  90. if task == "sort":
  91. return sorted(inp)
  92. elif task == "id":
  93. return inp
  94. elif task == "rev":
  95. return [i for i in reversed(inp)]
  96. elif task == "incr":
  97. carry = 1
  98. res = []
  99. for i in xrange(len(inp)):
  100. if inp[i] + carry < nclass:
  101. res.append(inp[i] + carry)
  102. carry = 0
  103. else:
  104. res.append(1)
  105. carry = 1
  106. return res
  107. elif task == "left":
  108. return [inp[0]]
  109. elif task == "right":
  110. return [inp[-1]]
  111. elif task == "left-shift":
  112. return [inp[l-1] for l in xrange(len(inp))]
  113. elif task == "right-shift":
  114. return [inp[l+1] for l in xrange(len(inp))]
  115. else:
  116. print_out("Unknown spec for task " + str(task))
  117. sys.exit()
  118. l = length
  119. cur_time = time.time()
  120. total_time = 0.0
  121. for case in xrange(nbr_cases):
  122. total_time += time.time() - cur_time
  123. cur_time = time.time()
  124. if l > 10000 and case % 100 == 1:
  125. print_out(" avg gen time %.4f s" % (total_time / float(case)))
  126. if task in ["add", "badd", "qadd", "bmul"]:
  127. i, t = rand_pair(l, task)
  128. train_set[task][len(i)].append([i, t])
  129. i, t = rand_pair(l, task)
  130. test_set[task][len(i)].append([i, t])
  131. elif task == "dup":
  132. i, t = rand_dup_pair(l)
  133. train_set[task][len(i)].append([i, t])
  134. i, t = rand_dup_pair(l)
  135. test_set[task][len(i)].append([i, t])
  136. else:
  137. inp = [np.random.randint(nclass - 1) + 1 for i in xrange(l)]
  138. target = spec(inp)
  139. train_set[task][l].append([inp, target])
  140. inp = [np.random.randint(nclass - 1) + 1 for i in xrange(l)]
  141. target = spec(inp)
  142. test_set[task][l].append([inp, target])
  143. def to_symbol(i):
  144. """Covert ids to text."""
  145. if i == 0: return ""
  146. if i == 11: return "+"
  147. if i == 12: return "*"
  148. return str(i-1)
  149. def to_id(s):
  150. """Covert text to ids."""
  151. if s == "+": return 11
  152. if s == "*": return 12
  153. return int(s) + 1
  154. def get_batch(max_length, batch_size, do_train, task, offset=None, preset=None):
  155. """Get a batch of data, training or testing."""
  156. inputs = []
  157. targets = []
  158. length = max_length
  159. if preset is None:
  160. cur_set = test_set[task]
  161. if do_train: cur_set = train_set[task]
  162. while not cur_set[length]:
  163. length -= 1
  164. pad_length = pad(length)
  165. for b in xrange(batch_size):
  166. if preset is None:
  167. elem = random.choice(cur_set[length])
  168. if offset is not None and offset + b < len(cur_set[length]):
  169. elem = cur_set[length][offset + b]
  170. else:
  171. elem = preset
  172. inp, target = elem[0], elem[1]
  173. assert len(inp) == length
  174. inputs.append(inp + [0 for l in xrange(pad_length - len(inp))])
  175. targets.append(target + [0 for l in xrange(pad_length - len(target))])
  176. res_input = []
  177. res_target = []
  178. for l in xrange(pad_length):
  179. new_input = np.array([inputs[b][l] for b in xrange(batch_size)],
  180. dtype=np.int32)
  181. new_target = np.array([targets[b][l] for b in xrange(batch_size)],
  182. dtype=np.int32)
  183. res_input.append(new_input)
  184. res_target.append(new_target)
  185. return res_input, res_target
  186. def print_out(s, newline=True):
  187. """Print a message out and log it to file."""
  188. if log_filename:
  189. try:
  190. with gfile.GFile(log_filename, mode="a") as f:
  191. f.write(s + ("\n" if newline else ""))
  192. # pylint: disable=bare-except
  193. except:
  194. sys.stdout.write("Error appending to %s\n" % log_filename)
  195. sys.stdout.write(s + ("\n" if newline else ""))
  196. sys.stdout.flush()
  197. def decode(output):
  198. return [np.argmax(o, axis=1) for o in output]
  199. def accuracy(inpt, output, target, batch_size, nprint):
  200. """Calculate output accuracy given target."""
  201. assert nprint < batch_size + 1
  202. def task_print(inp, output, target):
  203. stop_bound = 0
  204. print_len = 0
  205. while print_len < len(target) and target[print_len] > stop_bound:
  206. print_len += 1
  207. print_out(" i: " + " ".join([str(i - 1) for i in inp if i > 0]))
  208. print_out(" o: " +
  209. " ".join([str(output[l] - 1) for l in xrange(print_len)]))
  210. print_out(" t: " +
  211. " ".join([str(target[l] - 1) for l in xrange(print_len)]))
  212. decoded_target = target
  213. decoded_output = decode(output)
  214. total = 0
  215. errors = 0
  216. seq = [0 for b in xrange(batch_size)]
  217. for l in xrange(len(decoded_output)):
  218. for b in xrange(batch_size):
  219. if decoded_target[l][b] > 0:
  220. total += 1
  221. if decoded_output[l][b] != decoded_target[l][b]:
  222. seq[b] = 1
  223. errors += 1
  224. e = 0 # Previous error index
  225. for _ in xrange(min(nprint, sum(seq))):
  226. while seq[e] == 0:
  227. e += 1
  228. task_print([inpt[l][e] for l in xrange(len(inpt))],
  229. [decoded_output[l][e] for l in xrange(len(decoded_target))],
  230. [decoded_target[l][e] for l in xrange(len(decoded_target))])
  231. e += 1
  232. for b in xrange(nprint - errors):
  233. task_print([inpt[l][b] for l in xrange(len(inpt))],
  234. [decoded_output[l][b] for l in xrange(len(decoded_target))],
  235. [decoded_target[l][b] for l in xrange(len(decoded_target))])
  236. return errors, total, sum(seq)
  237. def safe_exp(x):
  238. perp = 10000
  239. if x < 100: perp = math.exp(x)
  240. if perp > 10000: return 10000
  241. return perp