This repository contains machine learning models implemented in TensorFlow. The models are maintained by their respective authors. To propose a model for inclusion, please submit a pull request.

Neal Wu 40a5739ae2 Remove <center> tags, which are breaking images in README.md files 8 éve
.github dc7791d01c Create ISSUE_TEMPLATE.md (#124) 9 éve
autoencoder aef35824f4 Removed external dependencies from autoencoder models 8 éve
compression 052e5e8b6e Converted the models repo to TF 1.0 using the upgrade script 8 éve
differential_privacy 5d758ef0f5 Merge pull request #924 from h4ck3rm1k3/master 8 éve
im2txt 3607bf489a Fix Links in Readme.md 8 éve
inception 40a5739ae2 Remove <center> tags, which are breaking images in README.md files 8 éve
learning_to_remember_rare_events 3f74c7b419 Convert tf.op_scope to tf.name_scope, plus a few other 1.0 upgrade changes 8 éve
lm_1b fdc4ce37a4 Fix README 9 éve
namignizer 5d758ef0f5 Merge pull request #924 from h4ck3rm1k3/master 8 éve
neural_gpu ee017e0dbf Fix two typos 8 éve
neural_programmer 5d758ef0f5 Merge pull request #924 from h4ck3rm1k3/master 8 éve
next_frame_prediction 052e5e8b6e Converted the models repo to TF 1.0 using the upgrade script 8 éve
real_nvp 5c53534305 Manually fixed many occurrences of tf.split 8 éve
resnet 92d751b4a9 correct tf.summary.scalar illegal name `learning rate` 8 éve
skip_thoughts 8af6f0e283 Update the encoding instructions 8 éve
slim 1e01a47493 Rename slim_walkthough.ipynb to slim_walkthrough.ipynb 8 éve
street 40a5739ae2 Remove <center> tags, which are breaking images in README.md files 8 éve
swivel 3f74c7b419 Convert tf.op_scope to tf.name_scope, plus a few other 1.0 upgrade changes 8 éve
syntaxnet ce9504afc4 Fix Mac build: avoid duplicating TF symbols 8 éve
textsum e4cbe9ee31 Fix the argument order for tf.nn.sampled_softmax_loss in textsum 8 éve
transformer ceed1a31db old argument targets->labels of tf.nn.softmax_cross_entropy_with_logits for tf 1.0 8 éve
tutorials f7cea8d01b Rename sampled_loss argument inputs to logits in preparation for named arguments requirement 8 éve
video_prediction 211ee00a3b Convert tf.GraphKeys.VARIABLES -> tf.GraphKeys.GLOBAL_VARIABLES 8 éve
.gitignore 3e6caf5ff0 Add a .gitignore file. (#164) 9 éve
.gitmodules 32ab5a58dd Adding SyntaxNet to tensorflow/models (#63) 9 éve
AUTHORS 41c52d60fe Spatial Transformer model 9 éve
CONTRIBUTING.md d84df16bc3 fixed contribution guidelines 9 éve
LICENSE 7c41e653dc Update LICENSE 9 éve
README.md 68609ca78a TF implementation of Skip Thoughts. 8 éve
WORKSPACE ac0829fa2b Consolidate privacy/ and differential_privacy/. 9 éve

README.md

TensorFlow Models

This repository contains machine learning models implemented in TensorFlow. The models are maintained by their respective authors.

To propose a model for inclusion please submit a pull request.

Models

  • autoencoder: various autoencoders.
  • compression: compressing and decompressing images using a pre-trained Residual GRU network.
  • differential_privacy: privacy-preserving student models from multiple teachers.
  • im2txt: image-to-text neural network for image captioning.
  • inception: deep convolutional networks for computer vision.
  • learning_to_remember_rare_events: a large-scale life-long memory module for use in deep learning.
  • lm_1b: language modeling on the one billion word benchmark.
  • namignizer: recognize and generate names.
  • neural_gpu: highly parallel neural computer.
  • neural_programmer: neural network augmented with logic and mathematic operations.
  • next_frame_prediction: probabilistic future frame synthesis via cross convolutional networks.
  • real_nvp: density estimation using real-valued non-volume preserving (real NVP) transformations.
  • resnet: deep and wide residual networks.
  • skip_thoughts: recurrent neural network sentence-to-vector encoder.
  • slim: image classification models in TF-Slim.
  • street: identify the name of a street (in France) from an image using a Deep RNN.
  • swivel: the Swivel algorithm for generating word embeddings.
  • syntaxnet: neural models of natural language syntax.
  • textsum: sequence-to-sequence with attention model for text summarization.
  • transformer: spatial transformer network, which allows the spatial manipulation of data within the network.
  • tutorials: models described in the TensorFlow tutorials.
  • video_prediction: predicting future video frames with neural advection.