123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743 |
- # Copyright 2015 Google Inc. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ==============================================================================
- """The Neural GPU Model."""
- import time
- import numpy as np
- import tensorflow as tf
- from tensorflow.python.framework import function
- import data_utils as data
- do_jit = False # Gives more speed but experimental for now.
- jit_scope = tf.contrib.compiler.jit.experimental_jit_scope
- def conv_linear(args, kw, kh, nin, nout, rate, do_bias, bias_start, prefix):
- """Convolutional linear map."""
- if not isinstance(args, (list, tuple)):
- args = [args]
- with tf.variable_scope(prefix):
- with tf.device("/cpu:0"):
- k = tf.get_variable("CvK", [kw, kh, nin, nout])
- if len(args) == 1:
- arg = args[0]
- else:
- arg = tf.concat(axis=3, values=args)
- res = tf.nn.convolution(arg, k, dilation_rate=(rate, 1), padding="SAME")
- if not do_bias: return res
- with tf.device("/cpu:0"):
- bias_term = tf.get_variable(
- "CvB", [nout], initializer=tf.constant_initializer(bias_start))
- bias_term = tf.reshape(bias_term, [1, 1, 1, nout])
- return res + bias_term
- def sigmoid_cutoff(x, cutoff):
- """Sigmoid with cutoff, e.g., 1.2sigmoid(x) - 0.1."""
- y = tf.sigmoid(x)
- if cutoff < 1.01: return y
- d = (cutoff - 1.0) / 2.0
- return tf.minimum(1.0, tf.maximum(0.0, cutoff * y - d), name="cutoff_min")
- @function.Defun(tf.float32, noinline=True)
- def sigmoid_cutoff_12(x):
- """Sigmoid with cutoff 1.2, specialized for speed and memory use."""
- y = tf.sigmoid(x)
- return tf.minimum(1.0, tf.maximum(0.0, 1.2 * y - 0.1), name="cutoff_min_12")
- @function.Defun(tf.float32, noinline=True)
- def sigmoid_hard(x):
- """Hard sigmoid."""
- return tf.minimum(1.0, tf.maximum(0.0, 0.25 * x + 0.5))
- def place_at14(decided, selected, it):
- """Place selected at it-th coordinate of decided, dim=1 of 4."""
- slice1 = decided[:, :it, :, :]
- slice2 = decided[:, it + 1:, :, :]
- return tf.concat(axis=1, values=[slice1, selected, slice2])
- def place_at13(decided, selected, it):
- """Place selected at it-th coordinate of decided, dim=1 of 3."""
- slice1 = decided[:, :it, :]
- slice2 = decided[:, it + 1:, :]
- return tf.concat(axis=1, values=[slice1, selected, slice2])
- def tanh_cutoff(x, cutoff):
- """Tanh with cutoff, e.g., 1.1tanh(x) cut to [-1. 1]."""
- y = tf.tanh(x)
- if cutoff < 1.01: return y
- d = (cutoff - 1.0) / 2.0
- return tf.minimum(1.0, tf.maximum(-1.0, (1.0 + d) * y))
- @function.Defun(tf.float32, noinline=True)
- def tanh_hard(x):
- """Hard tanh."""
- return tf.minimum(1.0, tf.maximum(0.0, x))
- def layer_norm(x, nmaps, prefix, epsilon=1e-5):
- """Layer normalize the 4D tensor x, averaging over the last dimension."""
- with tf.variable_scope(prefix):
- scale = tf.get_variable("layer_norm_scale", [nmaps],
- initializer=tf.ones_initializer())
- bias = tf.get_variable("layer_norm_bias", [nmaps],
- initializer=tf.zeros_initializer())
- mean, variance = tf.nn.moments(x, [3], keep_dims=True)
- norm_x = (x - mean) / tf.sqrt(variance + epsilon)
- return norm_x * scale + bias
- def conv_gru(inpts, mem, kw, kh, nmaps, rate, cutoff, prefix, do_layer_norm,
- args_len=None):
- """Convolutional GRU."""
- def conv_lin(args, suffix, bias_start):
- total_args_len = args_len or len(args) * nmaps
- res = conv_linear(args, kw, kh, total_args_len, nmaps, rate, True,
- bias_start, prefix + "/" + suffix)
- if do_layer_norm:
- return layer_norm(res, nmaps, prefix + "/" + suffix)
- else:
- return res
- if cutoff == 1.2:
- reset = sigmoid_cutoff_12(conv_lin(inpts + [mem], "r", 1.0))
- gate = sigmoid_cutoff_12(conv_lin(inpts + [mem], "g", 1.0))
- elif cutoff > 10:
- reset = sigmoid_hard(conv_lin(inpts + [mem], "r", 1.0))
- gate = sigmoid_hard(conv_lin(inpts + [mem], "g", 1.0))
- else:
- reset = sigmoid_cutoff(conv_lin(inpts + [mem], "r", 1.0), cutoff)
- gate = sigmoid_cutoff(conv_lin(inpts + [mem], "g", 1.0), cutoff)
- if cutoff > 10:
- candidate = tanh_hard(conv_lin(inpts + [reset * mem], "c", 0.0))
- else:
- # candidate = tanh_cutoff(conv_lin(inpts + [reset * mem], "c", 0.0), cutoff)
- candidate = tf.tanh(conv_lin(inpts + [reset * mem], "c", 0.0))
- return gate * mem + (1 - gate) * candidate
- CHOOSE_K = 256
- def memory_call(q, l, nmaps, mem_size, vocab_size, num_gpus, update_mem):
- raise ValueError("Fill for experiments with additional memory structures.")
- def memory_run(step, nmaps, mem_size, batch_size, vocab_size,
- global_step, do_training, update_mem, decay_factor, num_gpus,
- target_emb_weights, output_w, gpu_targets_tn, it):
- """Run memory."""
- q = step[:, 0, it, :]
- mlabels = gpu_targets_tn[:, it, 0]
- res, mask, mem_loss = memory_call(
- q, mlabels, nmaps, mem_size, vocab_size, num_gpus, update_mem)
- res = tf.gather(target_emb_weights, res) * tf.expand_dims(mask[:, 0], 1)
- # Mix gold and original in the first steps, 20% later.
- gold = tf.nn.dropout(tf.gather(target_emb_weights, mlabels), 0.7)
- use_gold = 1.0 - tf.cast(global_step, tf.float32) / (1000. * decay_factor)
- use_gold = tf.maximum(use_gold, 0.2) * do_training
- mem = tf.cond(tf.less(tf.random_uniform([]), use_gold),
- lambda: use_gold * gold + (1.0 - use_gold) * res,
- lambda: res)
- mem = tf.reshape(mem, [-1, 1, 1, nmaps])
- return mem, mem_loss, update_mem
- @tf.RegisterGradient("CustomIdG")
- def _custom_id_grad(_, grads):
- return grads
- def quantize(t, quant_scale, max_value=1.0):
- """Quantize a tensor t with each element in [-max_value, max_value]."""
- t = tf.minimum(max_value, tf.maximum(t, -max_value))
- big = quant_scale * (t + max_value) + 0.5
- with tf.get_default_graph().gradient_override_map({"Floor": "CustomIdG"}):
- res = (tf.floor(big) / quant_scale) - max_value
- return res
- def quantize_weights_op(quant_scale, max_value):
- ops = [v.assign(quantize(v, quant_scale, float(max_value)))
- for v in tf.trainable_variables()]
- return tf.group(*ops)
- def autoenc_quantize(x, nbits, nmaps, do_training, layers=1):
- """Autoencoder into nbits vectors of bits, using noise and sigmoids."""
- enc_x = tf.reshape(x, [-1, nmaps])
- for i in xrange(layers - 1):
- enc_x = tf.layers.dense(enc_x, nmaps, name="autoenc_%d" % i)
- enc_x = tf.layers.dense(enc_x, nbits, name="autoenc_%d" % (layers - 1))
- noise = tf.truncated_normal(tf.shape(enc_x), stddev=2.0)
- dec_x = sigmoid_cutoff_12(enc_x + noise * do_training)
- dec_x = tf.reshape(dec_x, [-1, nbits])
- for i in xrange(layers):
- dec_x = tf.layers.dense(dec_x, nmaps, name="autodec_%d" % i)
- return tf.reshape(dec_x, tf.shape(x))
- def make_dense(targets, noclass, low_param):
- """Move a batch of targets to a dense 1-hot representation."""
- low = low_param / float(noclass - 1)
- high = 1.0 - low * (noclass - 1)
- targets = tf.cast(targets, tf.int64)
- return tf.one_hot(targets, depth=noclass, on_value=high, off_value=low)
- def reorder_beam(beam_size, batch_size, beam_val, output, is_first,
- tensors_to_reorder):
- """Reorder to minimize beam costs."""
- # beam_val is [batch_size x beam_size]; let b = batch_size * beam_size
- # decided is len x b x a x b
- # output is b x out_size; step is b x len x a x b;
- outputs = tf.split(axis=0, num_or_size_splits=beam_size, value=tf.nn.log_softmax(output))
- all_beam_vals, all_beam_idx = [], []
- beam_range = 1 if is_first else beam_size
- for i in xrange(beam_range):
- top_out, top_out_idx = tf.nn.top_k(outputs[i], k=beam_size)
- cur_beam_val = beam_val[:, i]
- top_out = tf.Print(top_out, [top_out, top_out_idx, beam_val, i,
- cur_beam_val], "GREPO", summarize=8)
- all_beam_vals.append(top_out + tf.expand_dims(cur_beam_val, 1))
- all_beam_idx.append(top_out_idx)
- all_beam_idx = tf.reshape(tf.transpose(tf.concat(axis=1, values=all_beam_idx), [1, 0]),
- [-1])
- top_beam, top_beam_idx = tf.nn.top_k(tf.concat(axis=1, values=all_beam_vals), k=beam_size)
- top_beam_idx = tf.Print(top_beam_idx, [top_beam, top_beam_idx],
- "GREP", summarize=8)
- reordered = [[] for _ in xrange(len(tensors_to_reorder) + 1)]
- top_out_idx = []
- for i in xrange(beam_size):
- which_idx = top_beam_idx[:, i] * batch_size + tf.range(batch_size)
- top_out_idx.append(tf.gather(all_beam_idx, which_idx))
- which_beam = top_beam_idx[:, i] / beam_size # [batch]
- which_beam = which_beam * batch_size + tf.range(batch_size)
- reordered[0].append(tf.gather(output, which_beam))
- for i, t in enumerate(tensors_to_reorder):
- reordered[i + 1].append(tf.gather(t, which_beam))
- new_tensors = [tf.concat(axis=0, values=t) for t in reordered]
- top_out_idx = tf.concat(axis=0, values=top_out_idx)
- return (top_beam, new_tensors[0], top_out_idx, new_tensors[1:])
- class NeuralGPU(object):
- """Neural GPU Model."""
- def __init__(self, nmaps, vec_size, niclass, noclass, dropout,
- max_grad_norm, cutoff, nconvs, kw, kh, height, mem_size,
- learning_rate, min_length, num_gpus, num_replicas,
- grad_noise_scale, sampling_rate, act_noise=0.0, do_rnn=False,
- atrous=False, beam_size=1, backward=True, do_layer_norm=False,
- autoenc_decay=1.0):
- # Feeds for parameters and ops to update them.
- self.nmaps = nmaps
- if backward:
- self.global_step = tf.Variable(0, trainable=False, name="global_step")
- self.cur_length = tf.Variable(min_length, trainable=False)
- self.cur_length_incr_op = self.cur_length.assign_add(1)
- self.lr = tf.Variable(learning_rate, trainable=False)
- self.lr_decay_op = self.lr.assign(self.lr * 0.995)
- self.do_training = tf.placeholder(tf.float32, name="do_training")
- self.update_mem = tf.placeholder(tf.int32, name="update_mem")
- self.noise_param = tf.placeholder(tf.float32, name="noise_param")
- # Feeds for inputs, targets, outputs, losses, etc.
- self.input = tf.placeholder(tf.int32, name="inp")
- self.target = tf.placeholder(tf.int32, name="tgt")
- self.prev_step = tf.placeholder(tf.float32, name="prev_step")
- gpu_input = tf.split(axis=0, num_or_size_splits=num_gpus, value=self.input)
- gpu_target = tf.split(axis=0, num_or_size_splits=num_gpus, value=self.target)
- gpu_prev_step = tf.split(axis=0, num_or_size_splits=num_gpus, value=self.prev_step)
- batch_size = tf.shape(gpu_input[0])[0]
- if backward:
- adam_lr = 0.005 * self.lr
- adam = tf.train.AdamOptimizer(adam_lr, epsilon=1e-3)
- def adam_update(grads):
- return adam.apply_gradients(zip(grads, tf.trainable_variables()),
- global_step=self.global_step,
- name="adam_update")
- # When switching from Adam to SGD we perform reverse-decay.
- if backward:
- global_step_float = tf.cast(self.global_step, tf.float32)
- sampling_decay_exponent = global_step_float / 100000.0
- sampling_decay = tf.maximum(0.05, tf.pow(0.5, sampling_decay_exponent))
- self.sampling = sampling_rate * 0.05 / sampling_decay
- else:
- self.sampling = tf.constant(0.0)
- # Cache variables on cpu if needed.
- if num_replicas > 1 or num_gpus > 1:
- with tf.device("/cpu:0"):
- caching_const = tf.constant(0)
- tf.get_variable_scope().set_caching_device(caching_const.op.device)
- # partitioner = tf.variable_axis_size_partitioner(1024*256*4)
- # tf.get_variable_scope().set_partitioner(partitioner)
- def gpu_avg(l):
- if l[0] is None:
- for elem in l:
- assert elem is None
- return 0.0
- if len(l) < 2:
- return l[0]
- return sum(l) / float(num_gpus)
- self.length_tensor = tf.placeholder(tf.int32, name="length")
- with tf.device("/cpu:0"):
- emb_weights = tf.get_variable(
- "embedding", [niclass, vec_size],
- initializer=tf.random_uniform_initializer(-1.7, 1.7))
- if beam_size > 0:
- target_emb_weights = tf.get_variable(
- "target_embedding", [noclass, nmaps],
- initializer=tf.random_uniform_initializer(-1.7, 1.7))
- e0 = tf.scatter_update(emb_weights,
- tf.constant(0, dtype=tf.int32, shape=[1]),
- tf.zeros([1, vec_size]))
- output_w = tf.get_variable("output_w", [nmaps, noclass], tf.float32)
- def conv_rate(layer):
- if atrous:
- return 2**layer
- return 1
- # pylint: disable=cell-var-from-loop
- def enc_step(step):
- """Encoder step."""
- if autoenc_decay < 1.0:
- quant_step = autoenc_quantize(step, 16, nmaps, self.do_training)
- if backward:
- exp_glob = tf.train.exponential_decay(1.0, self.global_step - 10000,
- 1000, autoenc_decay)
- dec_factor = 1.0 - exp_glob # * self.do_training
- dec_factor = tf.cond(tf.less(self.global_step, 10500),
- lambda: tf.constant(0.05), lambda: dec_factor)
- else:
- dec_factor = 1.0
- cur = tf.cond(tf.less(tf.random_uniform([]), dec_factor),
- lambda: quant_step, lambda: step)
- else:
- cur = step
- if dropout > 0.0001:
- cur = tf.nn.dropout(cur, keep_prob)
- if act_noise > 0.00001:
- cur += tf.truncated_normal(tf.shape(cur)) * act_noise_scale
- # Do nconvs-many CGRU steps.
- if do_jit and tf.get_variable_scope().reuse:
- with jit_scope():
- for layer in xrange(nconvs):
- cur = conv_gru([], cur, kw, kh, nmaps, conv_rate(layer),
- cutoff, "ecgru_%d" % layer, do_layer_norm)
- else:
- for layer in xrange(nconvs):
- cur = conv_gru([], cur, kw, kh, nmaps, conv_rate(layer),
- cutoff, "ecgru_%d" % layer, do_layer_norm)
- return cur
- zero_tgt = tf.zeros([batch_size, nmaps, 1])
- zero_tgt.set_shape([None, nmaps, 1])
- def dec_substep(step, decided):
- """Decoder sub-step."""
- cur = step
- if dropout > 0.0001:
- cur = tf.nn.dropout(cur, keep_prob)
- if act_noise > 0.00001:
- cur += tf.truncated_normal(tf.shape(cur)) * act_noise_scale
- # Do nconvs-many CGRU steps.
- if do_jit and tf.get_variable_scope().reuse:
- with jit_scope():
- for layer in xrange(nconvs):
- cur = conv_gru([decided], cur, kw, kh, nmaps, conv_rate(layer),
- cutoff, "dcgru_%d" % layer, do_layer_norm)
- else:
- for layer in xrange(nconvs):
- cur = conv_gru([decided], cur, kw, kh, nmaps, conv_rate(layer),
- cutoff, "dcgru_%d" % layer, do_layer_norm)
- return cur
- # pylint: enable=cell-var-from-loop
- def dec_step(step, it, it_int, decided, output_ta, tgts,
- mloss, nupd_in, out_idx, beam_cost):
- """Decoder step."""
- nupd, mem_loss = 0, 0.0
- if mem_size > 0:
- it_incr = tf.minimum(it+1, length - 1)
- mem, mem_loss, nupd = memory_run(
- step, nmaps, mem_size, batch_size, noclass, self.global_step,
- self.do_training, self.update_mem, 10, num_gpus,
- target_emb_weights, output_w, gpu_targets_tn, it_incr)
- step = dec_substep(step, decided)
- output_l = tf.expand_dims(tf.expand_dims(step[:, it, 0, :], 1), 1)
- # Calculate argmax output.
- output = tf.reshape(output_l, [-1, nmaps])
- # pylint: disable=cell-var-from-loop
- output = tf.matmul(output, output_w)
- if beam_size > 1:
- beam_cost, output, out, reordered = reorder_beam(
- beam_size, batch_size, beam_cost, output, it_int == 0,
- [output_l, out_idx, step, decided])
- [output_l, out_idx, step, decided] = reordered
- else:
- # Scheduled sampling.
- out = tf.multinomial(tf.stop_gradient(output), 1)
- out = tf.to_int32(tf.squeeze(out, [1]))
- out_write = output_ta.write(it, output_l[:batch_size, :, :, :])
- output = tf.gather(target_emb_weights, out)
- output = tf.reshape(output, [-1, 1, nmaps])
- output = tf.concat(axis=1, values=[output] * height)
- tgt = tgts[it, :, :, :]
- selected = tf.cond(tf.less(tf.random_uniform([]), self.sampling),
- lambda: output, lambda: tgt)
- # pylint: enable=cell-var-from-loop
- dec_write = place_at14(decided, tf.expand_dims(selected, 1), it)
- out_idx = place_at13(
- out_idx, tf.reshape(out, [beam_size * batch_size, 1, 1]), it)
- if mem_size > 0:
- mem = tf.concat(axis=2, values=[mem] * height)
- dec_write = place_at14(dec_write, mem, it_incr)
- return (step, dec_write, out_write, mloss + mem_loss, nupd_in + nupd,
- out_idx, beam_cost)
- # Main model construction.
- gpu_outputs = []
- gpu_losses = []
- gpu_grad_norms = []
- grads_list = []
- gpu_out_idx = []
- self.after_enc_step = []
- for gpu in xrange(num_gpus): # Multi-GPU towers, average gradients later.
- length = self.length_tensor
- length_float = tf.cast(length, tf.float32)
- if gpu > 0:
- tf.get_variable_scope().reuse_variables()
- gpu_outputs.append([])
- gpu_losses.append([])
- gpu_grad_norms.append([])
- with tf.name_scope("gpu%d" % gpu), tf.device("/gpu:%d" % gpu):
- # Main graph creation loop.
- data.print_out("Creating model.")
- start_time = time.time()
- # Embed inputs and calculate mask.
- with tf.device("/cpu:0"):
- tgt_shape = tf.shape(tf.squeeze(gpu_target[gpu], [1]))
- weights = tf.where(tf.squeeze(gpu_target[gpu], [1]) > 0,
- tf.ones(tgt_shape), tf.zeros(tgt_shape))
- # Embed inputs and targets.
- with tf.control_dependencies([e0]):
- start = tf.gather(emb_weights, gpu_input[gpu]) # b x h x l x nmaps
- gpu_targets_tn = gpu_target[gpu] # b x 1 x len
- if beam_size > 0:
- embedded_targets_tn = tf.gather(target_emb_weights,
- gpu_targets_tn)
- embedded_targets_tn = tf.transpose(
- embedded_targets_tn, [2, 0, 1, 3]) # len x b x 1 x nmaps
- embedded_targets_tn = tf.concat(axis=2, values=[embedded_targets_tn] * height)
- # First image comes from start by applying convolution and adding 0s.
- start = tf.transpose(start, [0, 2, 1, 3]) # Now b x len x h x vec_s
- first = conv_linear(start, 1, 1, vec_size, nmaps, 1, True, 0.0, "input")
- first = layer_norm(first, nmaps, "input")
- # Computation steps.
- keep_prob = dropout * 3.0 / tf.sqrt(length_float)
- keep_prob = 1.0 - self.do_training * keep_prob
- act_noise_scale = act_noise * self.do_training
- # Start with a convolutional gate merging previous step.
- step = conv_gru([gpu_prev_step[gpu]], first,
- kw, kh, nmaps, 1, cutoff, "first", do_layer_norm)
- # This is just for running a baseline RNN seq2seq model.
- if do_rnn:
- self.after_enc_step.append(step) # Not meaningful here, but needed.
- lstm_cell = tf.contrib.rnn.BasicLSTMCell(height * nmaps)
- cell = tf.contrib.rnn.MultiRNNCell([lstm_cell] * nconvs)
- with tf.variable_scope("encoder"):
- encoder_outputs, encoder_state = tf.nn.dynamic_rnn(
- cell, tf.reshape(step, [batch_size, length, height * nmaps]),
- dtype=tf.float32, time_major=False)
- # Attention.
- attn = tf.layers.dense(
- encoder_outputs, height * nmaps, name="attn1")
- # pylint: disable=cell-var-from-loop
- @function.Defun(noinline=True)
- def attention_query(query, attn_v):
- vecs = tf.tanh(attn + tf.expand_dims(query, 1))
- mask = tf.reduce_sum(vecs * tf.reshape(attn_v, [1, 1, -1]), 2)
- mask = tf.nn.softmax(mask)
- return tf.reduce_sum(encoder_outputs * tf.expand_dims(mask, 2), 1)
- with tf.variable_scope("decoder"):
- def decoder_loop_fn((state, prev_cell_out, _), (cell_inp, cur_tgt)):
- """Decoder loop function."""
- attn_q = tf.layers.dense(prev_cell_out, height * nmaps,
- name="attn_query")
- attn_res = attention_query(attn_q, tf.get_variable(
- "attn_v", [height * nmaps],
- initializer=tf.random_uniform_initializer(-0.1, 0.1)))
- concatenated = tf.reshape(tf.concat(axis=1, values=[cell_inp, attn_res]),
- [batch_size, 2 * height * nmaps])
- cell_inp = tf.layers.dense(
- concatenated, height * nmaps, name="attn_merge")
- output, new_state = cell(cell_inp, state)
- mem_loss = 0.0
- if mem_size > 0:
- res, mask, mem_loss = memory_call(
- output, cur_tgt, height * nmaps, mem_size, noclass,
- num_gpus, self.update_mem)
- res = tf.gather(target_emb_weights, res)
- res *= tf.expand_dims(mask[:, 0], 1)
- output = tf.layers.dense(
- tf.concat(axis=1, values=[output, res]), height * nmaps, name="rnnmem")
- return new_state, output, mem_loss
- # pylint: enable=cell-var-from-loop
- gpu_targets = tf.squeeze(gpu_target[gpu], [1]) # b x len
- gpu_tgt_trans = tf.transpose(gpu_targets, [1, 0])
- dec_zero = tf.zeros([batch_size, 1], dtype=tf.int32)
- dec_inp = tf.concat(axis=1, values=[dec_zero, gpu_targets])
- dec_inp = dec_inp[:, :length]
- embedded_dec_inp = tf.gather(target_emb_weights, dec_inp)
- embedded_dec_inp_proj = tf.layers.dense(
- embedded_dec_inp, height * nmaps, name="dec_proj")
- embedded_dec_inp_proj = tf.transpose(embedded_dec_inp_proj,
- [1, 0, 2])
- init_vals = (encoder_state,
- tf.zeros([batch_size, height * nmaps]), 0.0)
- _, dec_outputs, mem_losses = tf.scan(
- decoder_loop_fn, (embedded_dec_inp_proj, gpu_tgt_trans),
- initializer=init_vals)
- mem_loss = tf.reduce_mean(mem_losses)
- outputs = tf.layers.dense(dec_outputs, nmaps, name="out_proj")
- # Final convolution to get logits, list outputs.
- outputs = tf.matmul(tf.reshape(outputs, [-1, nmaps]), output_w)
- outputs = tf.reshape(outputs, [length, batch_size, noclass])
- gpu_out_idx.append(tf.argmax(outputs, 2))
- else: # Here we go with the Neural GPU.
- # Encoder.
- enc_length = length
- step = enc_step(step) # First step hard-coded.
- # pylint: disable=cell-var-from-loop
- i = tf.constant(1)
- c = lambda i, _s: tf.less(i, enc_length)
- def enc_step_lambda(i, step):
- with tf.variable_scope(tf.get_variable_scope(), reuse=True):
- new_step = enc_step(step)
- return (i + 1, new_step)
- _, step = tf.while_loop(
- c, enc_step_lambda, [i, step],
- parallel_iterations=1, swap_memory=True)
- # pylint: enable=cell-var-from-loop
- self.after_enc_step.append(step)
- # Decoder.
- if beam_size > 0:
- output_ta = tf.TensorArray(
- dtype=tf.float32, size=length, dynamic_size=False,
- infer_shape=False, name="outputs")
- out_idx = tf.zeros([beam_size * batch_size, length, 1],
- dtype=tf.int32)
- decided_t = tf.zeros([beam_size * batch_size, length,
- height, vec_size])
- # Prepare for beam search.
- tgts = tf.concat(axis=1, values=[embedded_targets_tn] * beam_size)
- beam_cost = tf.zeros([batch_size, beam_size])
- step = tf.concat(axis=0, values=[step] * beam_size)
- # First step hard-coded.
- step, decided_t, output_ta, mem_loss, nupd, oi, bc = dec_step(
- step, 0, 0, decided_t, output_ta, tgts, 0.0, 0, out_idx,
- beam_cost)
- tf.get_variable_scope().reuse_variables()
- # pylint: disable=cell-var-from-loop
- def step_lambda(i, step, dec_t, out_ta, ml, nu, oi, bc):
- with tf.variable_scope(tf.get_variable_scope(), reuse=True):
- s, d, t, nml, nu, oi, bc = dec_step(
- step, i, 1, dec_t, out_ta, tgts, ml, nu, oi, bc)
- return (i + 1, s, d, t, nml, nu, oi, bc)
- i = tf.constant(1)
- c = lambda i, _s, _d, _o, _ml, _nu, _oi, _bc: tf.less(i, length)
- _, step, _, output_ta, mem_loss, nupd, out_idx, _ = tf.while_loop(
- c, step_lambda,
- [i, step, decided_t, output_ta, mem_loss, nupd, oi, bc],
- parallel_iterations=1, swap_memory=True)
- # pylint: enable=cell-var-from-loop
- gpu_out_idx.append(tf.squeeze(out_idx, [2]))
- outputs = output_ta.stack()
- outputs = tf.squeeze(outputs, [2, 3]) # Now l x b x nmaps
- else:
- # If beam_size is 0 or less, we don't have a decoder.
- mem_loss = 0.0
- outputs = tf.transpose(step[:, :, 1, :], [1, 0, 2])
- gpu_out_idx.append(tf.argmax(outputs, 2))
- # Final convolution to get logits, list outputs.
- outputs = tf.matmul(tf.reshape(outputs, [-1, nmaps]), output_w)
- outputs = tf.reshape(outputs, [length, batch_size, noclass])
- gpu_outputs[gpu] = tf.nn.softmax(outputs)
- # Calculate cross-entropy loss and normalize it.
- targets_soft = make_dense(tf.squeeze(gpu_target[gpu], [1]),
- noclass, 0.1)
- targets_soft = tf.reshape(targets_soft, [-1, noclass])
- targets_hard = make_dense(tf.squeeze(gpu_target[gpu], [1]),
- noclass, 0.0)
- targets_hard = tf.reshape(targets_hard, [-1, noclass])
- output = tf.transpose(outputs, [1, 0, 2])
- xent_soft = tf.reshape(tf.nn.softmax_cross_entropy_with_logits(
- logits=tf.reshape(output, [-1, noclass]), labels=targets_soft),
- [batch_size, length])
- xent_hard = tf.reshape(tf.nn.softmax_cross_entropy_with_logits(
- logits=tf.reshape(output, [-1, noclass]), labels=targets_hard),
- [batch_size, length])
- low, high = 0.1 / float(noclass - 1), 0.9
- const = high * tf.log(high) + float(noclass - 1) * low * tf.log(low)
- weight_sum = tf.reduce_sum(weights) + 1e-20
- true_perp = tf.reduce_sum(xent_hard * weights) / weight_sum
- soft_loss = tf.reduce_sum(xent_soft * weights) / weight_sum
- perp_loss = soft_loss + const
- # Final loss: cross-entropy + shared parameter relaxation part + extra.
- mem_loss = 0.5 * tf.reduce_mean(mem_loss) / length_float
- total_loss = perp_loss + mem_loss
- gpu_losses[gpu].append(true_perp)
- # Gradients.
- if backward:
- data.print_out("Creating backward pass for the model.")
- grads = tf.gradients(
- total_loss, tf.trainable_variables(),
- colocate_gradients_with_ops=True)
- for g_i, g in enumerate(grads):
- if isinstance(g, tf.IndexedSlices):
- grads[g_i] = tf.convert_to_tensor(g)
- grads, norm = tf.clip_by_global_norm(grads, max_grad_norm)
- gpu_grad_norms[gpu].append(norm)
- for g in grads:
- if grad_noise_scale > 0.001:
- g += tf.truncated_normal(tf.shape(g)) * self.noise_param
- grads_list.append(grads)
- else:
- gpu_grad_norms[gpu].append(0.0)
- data.print_out("Created model for gpu %d in %.2f s."
- % (gpu, time.time() - start_time))
- self.updates = []
- self.after_enc_step = tf.concat(axis=0, values=self.after_enc_step) # Concat GPUs.
- if backward:
- tf.get_variable_scope()._reuse = False
- tf.get_variable_scope().set_caching_device(None)
- grads = [gpu_avg([grads_list[g][i] for g in xrange(num_gpus)])
- for i in xrange(len(grads_list[0]))]
- update = adam_update(grads)
- self.updates.append(update)
- else:
- self.updates.append(tf.no_op())
- self.losses = [gpu_avg([gpu_losses[g][i] for g in xrange(num_gpus)])
- for i in xrange(len(gpu_losses[0]))]
- self.out_idx = tf.concat(axis=0, values=gpu_out_idx)
- self.grad_norms = [gpu_avg([gpu_grad_norms[g][i] for g in xrange(num_gpus)])
- for i in xrange(len(gpu_grad_norms[0]))]
- self.outputs = [tf.concat(axis=1, values=[gpu_outputs[g] for g in xrange(num_gpus)])]
- self.quantize_op = quantize_weights_op(512, 8)
- if backward:
- self.saver = tf.train.Saver(tf.global_variables(), max_to_keep=10)
- def step(self, sess, inp, target, do_backward_in, noise_param=None,
- beam_size=2, eos_id=2, eos_cost=0.0, update_mem=None, state=None):
- """Run a step of the network."""
- batch_size, height, length = inp.shape[0], inp.shape[1], inp.shape[2]
- do_backward = do_backward_in
- train_mode = True
- if do_backward_in is None:
- do_backward = False
- train_mode = False
- if update_mem is None:
- update_mem = do_backward
- feed_in = {}
- # print " feeding sequences of length %d" % length
- if state is None:
- state = np.zeros([batch_size, length, height, self.nmaps])
- feed_in[self.prev_step.name] = state
- feed_in[self.length_tensor.name] = length
- feed_in[self.noise_param.name] = noise_param if noise_param else 0.0
- feed_in[self.do_training.name] = 1.0 if do_backward else 0.0
- feed_in[self.update_mem.name] = 1 if update_mem else 0
- if do_backward_in is False:
- feed_in[self.sampling.name] = 0.0
- index = 0 # We're dynamic now.
- feed_out = []
- if do_backward:
- feed_out.append(self.updates[index])
- feed_out.append(self.grad_norms[index])
- if train_mode:
- feed_out.append(self.losses[index])
- feed_in[self.input.name] = inp
- feed_in[self.target.name] = target
- feed_out.append(self.outputs[index])
- if train_mode:
- # Make a full-sequence training step with one call to session.run.
- res = sess.run([self.after_enc_step] + feed_out, feed_in)
- after_enc_state, res = res[0], res[1:]
- else:
- # Make a full-sequence decoding step with one call to session.run.
- feed_in[self.sampling.name] = 1.1 # Sample every time.
- res = sess.run([self.after_enc_step, self.out_idx] + feed_out, feed_in)
- after_enc_state, out_idx = res[0], res[1]
- res = [res[2][l] for l in xrange(length)]
- outputs = [out_idx[:, i] for i in xrange(length)]
- cost = [0.0 for _ in xrange(beam_size * batch_size)]
- seen_eos = [0 for _ in xrange(beam_size * batch_size)]
- for idx, logit in enumerate(res):
- best = outputs[idx]
- for b in xrange(batch_size):
- if seen_eos[b] > 1:
- cost[b] -= eos_cost
- else:
- cost[b] += np.log(logit[b][best[b]])
- if best[b] in [eos_id]:
- seen_eos[b] += 1
- res = [[-c for c in cost]] + outputs
- # Collect and output results.
- offset = 0
- norm = None
- if do_backward:
- offset = 2
- norm = res[1]
- if train_mode:
- outputs = res[offset + 1]
- outputs = [outputs[l] for l in xrange(length)]
- return res[offset], outputs, norm, after_enc_state
|