1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465 |
- # Copyright 2016 The TensorFlow Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ==============================================================================
- """Differentially private optimizers.
- """
- import tensorflow as tf
- from differential_privacy.dp_sgd.dp_optimizer import sanitizer as san
- def ComputeDPPrincipalProjection(data, projection_dims,
- sanitizer, eps_delta, sigma):
- """Compute differentially private projection.
- Args:
- data: the input data, each row is a data vector.
- projection_dims: the projection dimension.
- sanitizer: the sanitizer used for achieving privacy.
- eps_delta: (eps, delta) pair.
- sigma: if not None, use noise sigma; otherwise compute it using
- eps_delta pair.
- Returns:
- A projection matrix with projection_dims columns.
- """
- eps, delta = eps_delta
- # Normalize each row.
- normalized_data = tf.nn.l2_normalize(data, 1)
- covar = tf.matmul(tf.transpose(normalized_data), normalized_data)
- saved_shape = tf.shape(covar)
- num_examples = tf.slice(tf.shape(data), [0], [1])
- if eps > 0:
- # Since the data is already normalized, there is no need to clip
- # the covariance matrix.
- assert delta > 0
- saned_covar = sanitizer.sanitize(
- tf.reshape(covar, [1, -1]), eps_delta, sigma=sigma,
- option=san.ClipOption(1.0, False), num_examples=num_examples)
- saned_covar = tf.reshape(saned_covar, saved_shape)
- # Symmetrize saned_covar. This also reduces the noise variance.
- saned_covar = 0.5 * (saned_covar + tf.transpose(saned_covar))
- else:
- saned_covar = covar
- # Compute the eigen decomposition of the covariance matrix, and
- # return the top projection_dims eigen vectors, represented as columns of
- # the projection matrix.
- eigvals, eigvecs = tf.self_adjoint_eig(saned_covar)
- _, topk_indices = tf.nn.top_k(eigvals, projection_dims)
- topk_indices = tf.reshape(topk_indices, [projection_dims])
- # Gather and return the corresponding eigenvectors.
- return tf.transpose(tf.gather(tf.transpose(eigvecs), topk_indices))
|