123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200 |
- # Copyright 2017 The TensorFlow Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ==============================================================================
- """Tracks training progress via per-word perplexity.
- This script should be run concurrently with training so that summaries show up
- in TensorBoard.
- """
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- import math
- import os.path
- import time
- import numpy as np
- import tensorflow as tf
- from skip_thoughts import configuration
- from skip_thoughts import skip_thoughts_model
- FLAGS = tf.flags.FLAGS
- tf.flags.DEFINE_string("input_file_pattern", None,
- "File pattern of sharded TFRecord input files.")
- tf.flags.DEFINE_string("checkpoint_dir", None,
- "Directory containing model checkpoints.")
- tf.flags.DEFINE_string("eval_dir", None, "Directory to write event logs to.")
- tf.flags.DEFINE_integer("eval_interval_secs", 600,
- "Interval between evaluation runs.")
- tf.flags.DEFINE_integer("num_eval_examples", 50000,
- "Number of examples for evaluation.")
- tf.flags.DEFINE_integer("min_global_step", 100,
- "Minimum global step to run evaluation.")
- tf.logging.set_verbosity(tf.logging.INFO)
- def evaluate_model(sess, losses, weights, num_batches, global_step,
- summary_writer, summary_op):
- """Computes perplexity-per-word over the evaluation dataset.
- Summaries and perplexity-per-word are written out to the eval directory.
- Args:
- sess: Session object.
- losses: A Tensor of any shape; the target cross entropy losses for the
- current batch.
- weights: A Tensor of weights corresponding to losses.
- num_batches: Integer; the number of evaluation batches.
- global_step: Integer; global step of the model checkpoint.
- summary_writer: Instance of SummaryWriter.
- summary_op: Op for generating model summaries.
- """
- # Log model summaries on a single batch.
- summary_str = sess.run(summary_op)
- summary_writer.add_summary(summary_str, global_step)
- start_time = time.time()
- sum_losses = 0.0
- sum_weights = 0.0
- for i in xrange(num_batches):
- batch_losses, batch_weights = sess.run([losses, weights])
- sum_losses += np.sum(batch_losses * batch_weights)
- sum_weights += np.sum(batch_weights)
- if not i % 100:
- tf.logging.info("Computed losses for %d of %d batches.", i + 1,
- num_batches)
- eval_time = time.time() - start_time
- perplexity = math.exp(sum_losses / sum_weights)
- tf.logging.info("Perplexity = %f (%.2f sec)", perplexity, eval_time)
- # Log perplexity to the SummaryWriter.
- summary = tf.Summary()
- value = summary.value.add()
- value.simple_value = perplexity
- value.tag = "perplexity"
- summary_writer.add_summary(summary, global_step)
- # Write the Events file to the eval directory.
- summary_writer.flush()
- tf.logging.info("Finished processing evaluation at global step %d.",
- global_step)
- def run_once(model, losses, weights, saver, summary_writer, summary_op):
- """Evaluates the latest model checkpoint.
- Args:
- model: Instance of SkipThoughtsModel; the model to evaluate.
- losses: Tensor; the target cross entropy losses for the current batch.
- weights: A Tensor of weights corresponding to losses.
- saver: Instance of tf.train.Saver for restoring model Variables.
- summary_writer: Instance of FileWriter.
- summary_op: Op for generating model summaries.
- """
- model_path = tf.train.latest_checkpoint(FLAGS.checkpoint_dir)
- if not model_path:
- tf.logging.info("Skipping evaluation. No checkpoint found in: %s",
- FLAGS.checkpoint_dir)
- return
- with tf.Session() as sess:
- # Load model from checkpoint.
- tf.logging.info("Loading model from checkpoint: %s", model_path)
- saver.restore(sess, model_path)
- global_step = tf.train.global_step(sess, model.global_step.name)
- tf.logging.info("Successfully loaded %s at global step = %d.",
- os.path.basename(model_path), global_step)
- if global_step < FLAGS.min_global_step:
- tf.logging.info("Skipping evaluation. Global step = %d < %d", global_step,
- FLAGS.min_global_step)
- return
- # Start the queue runners.
- coord = tf.train.Coordinator()
- threads = tf.train.start_queue_runners(coord=coord)
- num_eval_batches = int(
- math.ceil(FLAGS.num_eval_examples / model.config.batch_size))
- # Run evaluation on the latest checkpoint.
- try:
- evaluate_model(sess, losses, weights, num_eval_batches, global_step,
- summary_writer, summary_op)
- except tf.InvalidArgumentError:
- tf.logging.error(
- "Evaluation raised InvalidArgumentError (e.g. due to Nans).")
- finally:
- coord.request_stop()
- coord.join(threads, stop_grace_period_secs=10)
- def main(unused_argv):
- if not FLAGS.input_file_pattern:
- raise ValueError("--input_file_pattern is required.")
- if not FLAGS.checkpoint_dir:
- raise ValueError("--checkpoint_dir is required.")
- if not FLAGS.eval_dir:
- raise ValueError("--eval_dir is required.")
- # Create the evaluation directory if it doesn't exist.
- eval_dir = FLAGS.eval_dir
- if not tf.gfile.IsDirectory(eval_dir):
- tf.logging.info("Creating eval directory: %s", eval_dir)
- tf.gfile.MakeDirs(eval_dir)
- g = tf.Graph()
- with g.as_default():
- # Build the model for evaluation.
- model_config = configuration.model_config(
- input_file_pattern=FLAGS.input_file_pattern,
- input_queue_capacity=FLAGS.num_eval_examples,
- shuffle_input_data=False)
- model = skip_thoughts_model.SkipThoughtsModel(model_config, mode="eval")
- model.build()
- losses = tf.concat(model.target_cross_entropy_losses, 0)
- weights = tf.concat(model.target_cross_entropy_loss_weights, 0)
- # Create the Saver to restore model Variables.
- saver = tf.train.Saver()
- # Create the summary operation and the summary writer.
- summary_op = tf.summary.merge_all()
- summary_writer = tf.summary.FileWriter(eval_dir)
- g.finalize()
- # Run a new evaluation run every eval_interval_secs.
- while True:
- start = time.time()
- tf.logging.info("Starting evaluation at " + time.strftime(
- "%Y-%m-%d-%H:%M:%S", time.localtime()))
- run_once(model, losses, weights, saver, summary_writer, summary_op)
- time_to_next_eval = start + FLAGS.eval_interval_secs - time.time()
- if time_to_next_eval > 0:
- time.sleep(time_to_next_eval)
- if __name__ == "__main__":
- tf.app.run()
|