VariationalAutoencoder.py 3.0 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576
  1. import tensorflow as tf
  2. import numpy as np
  3. import autoencoder.Utils
  4. class VariationalAutoencoder(object):
  5. def __init__(self, n_input, n_hidden, optimizer = tf.train.AdamOptimizer(),
  6. gaussian_sample_size = 128):
  7. self.n_input = n_input
  8. self.n_hidden = n_hidden
  9. self.gaussian_sample_size = gaussian_sample_size
  10. network_weights = self._initialize_weights()
  11. self.weights = network_weights
  12. # model
  13. self.x = tf.placeholder(tf.float32, [None, self.n_input])
  14. self.z_mean = tf.add(tf.matmul(self.x, self.weights['w1']), self.weights['b1'])
  15. self.z_log_sigma_sq = tf.add(tf.matmul(self.x, self.weights['log_sigma_w1']), self.weights['log_sigma_b1'])
  16. # sample from gaussian distribution
  17. eps = tf.random_normal((self.gaussian_sample_size, n_hidden), 0, 1, dtype = tf.float32)
  18. self.z = tf.add(self.z_mean, tf.mul(tf.sqrt(tf.exp(self.z_log_sigma_sq)), eps))
  19. self.reconstruction = tf.add(tf.matmul(self.z, self.weights['w2']), self.weights['b2'])
  20. # cost
  21. reconstr_loss = 0.5 * tf.reduce_sum(tf.pow(tf.sub(self.reconstruction, self.x), 2.0))
  22. latent_loss = -0.5 * tf.reduce_sum(1 + self.z_log_sigma_sq
  23. - tf.square(self.z_mean)
  24. - tf.exp(self.z_log_sigma_sq), 1)
  25. self.cost = tf.reduce_mean(reconstr_loss + latent_loss)
  26. self.optimizer = optimizer.minimize(self.cost)
  27. init = tf.initialize_all_variables()
  28. self.sess = tf.Session()
  29. self.sess.run(init)
  30. def _initialize_weights(self):
  31. all_weights = dict()
  32. all_weights['w1'] = tf.Variable(autoencoder.Utils.xavier_init(self.n_input, self.n_hidden))
  33. all_weights['log_sigma_w1'] = tf.Variable(autoencoder.Utils.xavier_init(self.n_input, self.n_hidden))
  34. all_weights['b1'] = tf.Variable(tf.zeros([self.n_hidden], dtype=tf.float32))
  35. all_weights['log_sigma_b1'] = tf.Variable(tf.zeros([self.n_hidden], dtype=tf.float32))
  36. all_weights['w2'] = tf.Variable(tf.zeros([self.n_hidden, self.n_input], dtype=tf.float32))
  37. all_weights['b2'] = tf.Variable(tf.zeros([self.n_input], dtype=tf.float32))
  38. return all_weights
  39. def partial_fit(self, X):
  40. cost, opt = self.sess.run((self.cost, self.optimizer), feed_dict={self.x: X})
  41. return cost
  42. def calc_total_cost(self, X):
  43. return self.sess.run(self.cost, feed_dict = {self.x: X})
  44. def transform(self, X):
  45. return self.sess.run(self.z_mean, feed_dict={self.x: X})
  46. def generate(self, hidden = None):
  47. if hidden is None:
  48. hidden = np.random.normal(size=self.weights["b1"])
  49. return self.sess.run(self.reconstruction, feed_dict={self.z_mean: hidden})
  50. def reconstruct(self, X):
  51. return self.sess.run(self.reconstruction, feed_dict={self.x: X})
  52. def getWeights(self):
  53. return self.sess.run(self.weights['w1'])
  54. def getBiases(self):
  55. return self.sess.run(self.weights['b1'])