123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106 |
- # Copyright 2016 Google Inc. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ==============================================================================
- """Construct the spec for the CONLL2017 Parser baseline."""
- import tensorflow as tf
- from tensorflow.python.platform import gfile
- from dragnn.protos import spec_pb2
- from dragnn.python import spec_builder
- flags = tf.app.flags
- FLAGS = flags.FLAGS
- flags.DEFINE_string('spec_file', 'parser_spec.textproto',
- 'Filename to save the spec to.')
- def main(unused_argv):
- # Left-to-right, character-based LSTM.
- char2word = spec_builder.ComponentSpecBuilder('char_lstm')
- char2word.set_network_unit(
- name='wrapped_units.LayerNormBasicLSTMNetwork',
- hidden_layer_sizes='256')
- char2word.set_transition_system(name='char-shift-only', left_to_right='true')
- char2word.add_fixed_feature(name='chars', fml='char-input.text-char',
- embedding_dim=16)
- # Lookahead LSTM reads right-to-left to represent the rightmost context of the
- # words. It gets word embeddings from the char model.
- lookahead = spec_builder.ComponentSpecBuilder('lookahead')
- lookahead.set_network_unit(
- name='wrapped_units.LayerNormBasicLSTMNetwork',
- hidden_layer_sizes='256')
- lookahead.set_transition_system(name='shift-only', left_to_right='false')
- lookahead.add_link(source=char2word, fml='input.last-char-focus',
- embedding_dim=64)
- # Construct the tagger. This is a simple left-to-right LSTM sequence tagger.
- tagger = spec_builder.ComponentSpecBuilder('tagger')
- tagger.set_network_unit(
- name='wrapped_units.LayerNormBasicLSTMNetwork',
- hidden_layer_sizes='256')
- tagger.set_transition_system(name='tagger')
- tagger.add_token_link(source=lookahead, fml='input.focus', embedding_dim=64)
- # Construct the parser.
- parser = spec_builder.ComponentSpecBuilder('parser')
- parser.set_network_unit(name='FeedForwardNetwork', hidden_layer_sizes='256',
- layer_norm_hidden='true')
- parser.set_transition_system(name='arc-standard')
- parser.add_token_link(source=lookahead, fml='input.focus', embedding_dim=64)
- parser.add_token_link(
- source=tagger, fml='input.focus stack.focus stack(1).focus',
- embedding_dim=64)
- # Add discrete features of the predicted parse tree so far, like in Parsey
- # McParseface.
- parser.add_fixed_feature(name='labels', embedding_dim=16,
- fml=' '.join([
- 'stack.child(1).label',
- 'stack.child(1).sibling(-1).label',
- 'stack.child(-1).label',
- 'stack.child(-1).sibling(1).label',
- 'stack(1).child(1).label',
- 'stack(1).child(1).sibling(-1).label',
- 'stack(1).child(-1).label',
- 'stack(1).child(-1).sibling(1).label',
- 'stack.child(2).label',
- 'stack.child(-2).label',
- 'stack(1).child(2).label',
- 'stack(1).child(-2).label']))
- # Recurrent connection for the arc-standard parser. For both tokens on the
- # stack, we connect to the last time step to either SHIFT or REDUCE that
- # token. This allows the parser to build up compositional representations of
- # phrases.
- parser.add_link(
- source=parser, # recurrent connection
- name='rnn-stack', # unique identifier
- fml='stack.focus stack(1).focus', # look for both stack tokens
- source_translator='shift-reduce-step', # maps token indices -> step
- embedding_dim=64) # project down to 64 dims
- master_spec = spec_pb2.MasterSpec()
- master_spec.component.extend(
- [char2word.spec, lookahead.spec, tagger.spec, parser.spec])
- with gfile.FastGFile(FLAGS.spec_file, 'w') as f:
- f.write(str(master_spec).encode('utf-8'))
- if __name__ == '__main__':
- tf.app.run()
|