1234567891011121314151617181920212223242526272829303132333435363738394041424344454647 |
- # Copyright 2016 Google Inc. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ==============================================================================
- """A binary to evaluate Inception on the flowers data set.
- Note that using the supplied pre-trained inception checkpoint, the eval should
- achieve:
- precision @ 1 = 0.7874 recall @ 5 = 0.9436 [50000 examples]
- See the README.md for more details.
- """
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- import tensorflow as tf
- from inception import inception_eval
- from inception.imagenet_data import ImagenetData
- FLAGS = tf.app.flags.FLAGS
- def main(unused_argv=None):
- dataset = ImagenetData(subset=FLAGS.subset)
- assert dataset.data_files()
- if tf.gfile.Exists(FLAGS.eval_dir):
- tf.gfile.DeleteRecursively(FLAGS.eval_dir)
- tf.gfile.MakeDirs(FLAGS.eval_dir)
- inception_eval.evaluate(dataset)
- if __name__ == '__main__':
- tf.app.run()
|