123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172 |
- # Copyright 2016 Google Inc. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ==============================================================================
- """A library to evaluate Inception on a single GPU.
- """
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- from datetime import datetime
- import math
- import os.path
- import time
- import numpy as np
- import tensorflow as tf
- from inception import image_processing
- from inception import inception_model as inception
- FLAGS = tf.app.flags.FLAGS
- tf.app.flags.DEFINE_string('eval_dir', '/tmp/imagenet_eval',
- """Directory where to write event logs.""")
- tf.app.flags.DEFINE_string('checkpoint_dir', '/tmp/imagenet_train',
- """Directory where to read model checkpoints.""")
- # Flags governing the frequency of the eval.
- tf.app.flags.DEFINE_integer('eval_interval_secs', 60 * 5,
- """How often to run the eval.""")
- tf.app.flags.DEFINE_boolean('run_once', False,
- """Whether to run eval only once.""")
- # Flags governing the data used for the eval.
- tf.app.flags.DEFINE_integer('num_examples', 50000,
- """Number of examples to run. Note that the eval """
- """ImageNet dataset contains 50000 examples.""")
- tf.app.flags.DEFINE_string('subset', 'validation',
- """Either 'validation' or 'train'.""")
- def _eval_once(saver, summary_writer, top_1_op, top_5_op, summary_op):
- """Runs Eval once.
- Args:
- saver: Saver.
- summary_writer: Summary writer.
- top_1_op: Top 1 op.
- top_5_op: Top 5 op.
- summary_op: Summary op.
- """
- with tf.Session() as sess:
- ckpt = tf.train.get_checkpoint_state(FLAGS.checkpoint_dir)
- if ckpt and ckpt.model_checkpoint_path:
- if os.path.isabs(ckpt.model_checkpoint_path):
- # Restores from checkpoint with absolute path.
- saver.restore(sess, ckpt.model_checkpoint_path)
- else:
- # Restores from checkpoint with relative path.
- saver.restore(sess, os.path.join(FLAGS.checkpoint_dir,
- ckpt.model_checkpoint_path))
- # Assuming model_checkpoint_path looks something like:
- # /my-favorite-path/imagenet_train/model.ckpt-0,
- # extract global_step from it.
- global_step = ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1]
- print('Succesfully loaded model from %s at step=%s.' %
- (ckpt.model_checkpoint_path, global_step))
- else:
- print('No checkpoint file found')
- return
- # Start the queue runners.
- coord = tf.train.Coordinator()
- try:
- threads = []
- for qr in tf.get_collection(tf.GraphKeys.QUEUE_RUNNERS):
- threads.extend(qr.create_threads(sess, coord=coord, daemon=True,
- start=True))
- num_iter = int(math.ceil(FLAGS.num_examples / FLAGS.batch_size))
- # Counts the number of correct predictions.
- count_top_1 = 0.0
- count_top_5 = 0.0
- total_sample_count = num_iter * FLAGS.batch_size
- step = 0
- print('%s: starting evaluation on (%s).' % (datetime.now(), FLAGS.subset))
- start_time = time.time()
- while step < num_iter and not coord.should_stop():
- top_1, top_5 = sess.run([top_1_op, top_5_op])
- count_top_1 += np.sum(top_1)
- count_top_5 += np.sum(top_5)
- step += 1
- if step % 20 == 0:
- duration = time.time() - start_time
- sec_per_batch = duration / 20.0
- examples_per_sec = FLAGS.batch_size / sec_per_batch
- print('%s: [%d batches out of %d] (%.1f examples/sec; %.3f'
- 'sec/batch)' % (datetime.now(), step, num_iter,
- examples_per_sec, sec_per_batch))
- start_time = time.time()
- # Compute precision @ 1.
- precision_at_1 = count_top_1 / total_sample_count
- recall_at_5 = count_top_5 / total_sample_count
- print('%s: precision @ 1 = %.4f recall @ 5 = %.4f [%d examples]' %
- (datetime.now(), precision_at_1, recall_at_5, total_sample_count))
- summary = tf.Summary()
- summary.ParseFromString(sess.run(summary_op))
- summary.value.add(tag='Precision @ 1', simple_value=precision_at_1)
- summary.value.add(tag='Recall @ 5', simple_value=recall_at_5)
- summary_writer.add_summary(summary, global_step)
- except Exception as e: # pylint: disable=broad-except
- coord.request_stop(e)
- coord.request_stop()
- coord.join(threads, stop_grace_period_secs=10)
- def evaluate(dataset):
- """Evaluate model on Dataset for a number of steps."""
- with tf.Graph().as_default():
- # Get images and labels from the dataset.
- images, labels = image_processing.inputs(dataset)
- # Number of classes in the Dataset label set plus 1.
- # Label 0 is reserved for an (unused) background class.
- num_classes = dataset.num_classes() + 1
- # Build a Graph that computes the logits predictions from the
- # inference model.
- logits, _ = inception.inference(images, num_classes)
- # Calculate predictions.
- top_1_op = tf.nn.in_top_k(logits, labels, 1)
- top_5_op = tf.nn.in_top_k(logits, labels, 5)
- # Restore the moving average version of the learned variables for eval.
- variable_averages = tf.train.ExponentialMovingAverage(
- inception.MOVING_AVERAGE_DECAY)
- variables_to_restore = variable_averages.variables_to_restore()
- saver = tf.train.Saver(variables_to_restore)
- # Build the summary operation based on the TF collection of Summaries.
- summary_op = tf.merge_all_summaries()
- graph_def = tf.get_default_graph().as_graph_def()
- summary_writer = tf.train.SummaryWriter(FLAGS.eval_dir,
- graph_def=graph_def)
- while True:
- _eval_once(saver, summary_writer, top_1_op, top_5_op, summary_op)
- if FLAGS.run_once:
- break
- time.sleep(FLAGS.eval_interval_secs)
|