123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990 |
- # Copyright 2016 Google Inc. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ==============================================================================
- """Tests for slim.losses."""
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- import tensorflow as tf
- from inception.slim import losses
- class LossesTest(tf.test.TestCase):
- def testL1Loss(self):
- with self.test_session():
- shape = [5, 5, 5]
- num_elem = 5 * 5 * 5
- weights = tf.constant(1.0, shape=shape)
- wd = 0.01
- loss = losses.l1_loss(weights, wd)
- self.assertEquals(loss.op.name, 'L1Loss/value')
- self.assertAlmostEqual(loss.eval(), num_elem * wd, 5)
- def testL2Loss(self):
- with self.test_session():
- shape = [5, 5, 5]
- num_elem = 5 * 5 * 5
- weights = tf.constant(1.0, shape=shape)
- wd = 0.01
- loss = losses.l2_loss(weights, wd)
- self.assertEquals(loss.op.name, 'L2Loss/value')
- self.assertAlmostEqual(loss.eval(), num_elem * wd / 2, 5)
- class CrossEntropyLossTest(tf.test.TestCase):
- def testCrossEntropyLossAllCorrect(self):
- with self.test_session():
- logits = tf.constant([[10.0, 0.0, 0.0],
- [0.0, 10.0, 0.0],
- [0.0, 0.0, 10.0]])
- labels = tf.constant([[1, 0, 0],
- [0, 1, 0],
- [0, 0, 1]])
- loss = losses.cross_entropy_loss(logits, labels)
- self.assertEquals(loss.op.name, 'CrossEntropyLoss/value')
- self.assertAlmostEqual(loss.eval(), 0.0, 3)
- def testCrossEntropyLossAllWrong(self):
- with self.test_session():
- logits = tf.constant([[10.0, 0.0, 0.0],
- [0.0, 10.0, 0.0],
- [0.0, 0.0, 10.0]])
- labels = tf.constant([[0, 0, 1],
- [1, 0, 0],
- [0, 1, 0]])
- loss = losses.cross_entropy_loss(logits, labels)
- self.assertEquals(loss.op.name, 'CrossEntropyLoss/value')
- self.assertAlmostEqual(loss.eval(), 10.0, 3)
- def testCrossEntropyLossAllWrongWithWeight(self):
- with self.test_session():
- logits = tf.constant([[10.0, 0.0, 0.0],
- [0.0, 10.0, 0.0],
- [0.0, 0.0, 10.0]])
- labels = tf.constant([[0, 0, 1],
- [1, 0, 0],
- [0, 1, 0]])
- loss = losses.cross_entropy_loss(logits, labels, weight=0.5)
- self.assertEquals(loss.op.name, 'CrossEntropyLoss/value')
- self.assertAlmostEqual(loss.eval(), 5.0, 3)
- if __name__ == '__main__':
- tf.test.main()
|