| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356 |
- # Copyright 2016 Google Inc. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ==============================================================================
- """A library to train Inception using multiple GPU's with synchronous updates.
- """
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- import copy
- from datetime import datetime
- import os.path
- import re
- import time
- import numpy as np
- import tensorflow as tf
- from inception import image_processing
- from inception import inception_model as inception
- from inception.slim import slim
- FLAGS = tf.app.flags.FLAGS
- tf.app.flags.DEFINE_string('train_dir', '/tmp/imagenet_train',
- """Directory where to write event logs """
- """and checkpoint.""")
- tf.app.flags.DEFINE_integer('max_steps', 10000000,
- """Number of batches to run.""")
- tf.app.flags.DEFINE_string('subset', 'train',
- """Either 'train' or 'validation'.""")
- # Flags governing the hardware employed for running TensorFlow.
- tf.app.flags.DEFINE_integer('num_gpus', 1,
- """How many GPUs to use.""")
- tf.app.flags.DEFINE_boolean('log_device_placement', False,
- """Whether to log device placement.""")
- # Flags governing the type of training.
- tf.app.flags.DEFINE_boolean('fine_tune', False,
- """If set, randomly initialize the final layer """
- """of weights in order to train the network on a """
- """new task.""")
- tf.app.flags.DEFINE_string('pretrained_model_checkpoint_path', '',
- """If specified, restore this pretrained model """
- """before beginning any training.""")
- # **IMPORTANT**
- # Please note that this learning rate schedule is heavily dependent on the
- # hardware architecture, batch size and any changes to the model architecture
- # specification. Selecting a finely tuned learning rate schedule is an
- # empirical process that requires some experimentation. Please see README.md
- # more guidance and discussion.
- #
- # With 8 Tesla K40's and a batch size = 256, the following setup achieves
- # precision@1 = 73.5% after 100 hours and 100K steps (20 epochs).
- # Learning rate decay factor selected from http://arxiv.org/abs/1404.5997.
- tf.app.flags.DEFINE_float('initial_learning_rate', 0.1,
- """Initial learning rate.""")
- tf.app.flags.DEFINE_float('num_epochs_per_decay', 30.0,
- """Epochs after which learning rate decays.""")
- tf.app.flags.DEFINE_float('learning_rate_decay_factor', 0.16,
- """Learning rate decay factor.""")
- # Constants dictating the learning rate schedule.
- RMSPROP_DECAY = 0.9 # Decay term for RMSProp.
- RMSPROP_MOMENTUM = 0.9 # Momentum in RMSProp.
- RMSPROP_EPSILON = 1.0 # Epsilon term for RMSProp.
- def _tower_loss(images, labels, num_classes, scope):
- """Calculate the total loss on a single tower running the ImageNet model.
- We perform 'batch splitting'. This means that we cut up a batch across
- multiple GPU's. For instance, if the batch size = 32 and num_gpus = 2,
- then each tower will operate on an batch of 16 images.
- Args:
- images: Images. 4D tensor of size [batch_size, FLAGS.image_size,
- FLAGS.image_size, 3].
- labels: 1-D integer Tensor of [batch_size].
- num_classes: number of classes
- scope: unique prefix string identifying the ImageNet tower, e.g.
- 'tower_0'.
- Returns:
- Tensor of shape [] containing the total loss for a batch of data
- """
- # When fine-tuning a model, we do not restore the logits but instead we
- # randomly initialize the logits. The number of classes in the output of the
- # logit is the number of classes in specified Dataset.
- restore_logits = not FLAGS.fine_tune
- # Build inference Graph.
- logits = inception.inference(images, num_classes, for_training=True,
- restore_logits=restore_logits,
- scope=scope)
- # Build the portion of the Graph calculating the losses. Note that we will
- # assemble the total_loss using a custom function below.
- split_batch_size = images.get_shape().as_list()[0]
- inception.loss(logits, labels, batch_size=split_batch_size)
- # Assemble all of the losses for the current tower only.
- losses = tf.get_collection(slim.losses.LOSSES_COLLECTION, scope)
- # Calculate the total loss for the current tower.
- regularization_losses = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)
- total_loss = tf.add_n(losses + regularization_losses, name='total_loss')
- # Compute the moving average of all individual losses and the total loss.
- loss_averages = tf.train.ExponentialMovingAverage(0.9, name='avg')
- loss_averages_op = loss_averages.apply(losses + [total_loss])
- # Attach a scalar summmary to all individual losses and the total loss; do the
- # same for the averaged version of the losses.
- for l in losses + [total_loss]:
- # Remove 'tower_[0-9]/' from the name in case this is a multi-GPU training
- # session. This helps the clarity of presentation on TensorBoard.
- loss_name = re.sub('%s_[0-9]*/' % inception.TOWER_NAME, '', l.op.name)
- # Name each loss as '(raw)' and name the moving average version of the loss
- # as the original loss name.
- tf.scalar_summary(loss_name +' (raw)', l)
- tf.scalar_summary(loss_name, loss_averages.average(l))
- with tf.control_dependencies([loss_averages_op]):
- total_loss = tf.identity(total_loss)
- return total_loss
- def _average_gradients(tower_grads):
- """Calculate the average gradient for each shared variable across all towers.
- Note that this function provides a synchronization point across all towers.
- Args:
- tower_grads: List of lists of (gradient, variable) tuples. The outer list
- is over individual gradients. The inner list is over the gradient
- calculation for each tower.
- Returns:
- List of pairs of (gradient, variable) where the gradient has been averaged
- across all towers.
- """
- average_grads = []
- for grad_and_vars in zip(*tower_grads):
- # Note that each grad_and_vars looks like the following:
- # ((grad0_gpu0, var0_gpu0), ... , (grad0_gpuN, var0_gpuN))
- grads = []
- for g, _ in grad_and_vars:
- # Add 0 dimension to the gradients to represent the tower.
- expanded_g = tf.expand_dims(g, 0)
- # Append on a 'tower' dimension which we will average over below.
- grads.append(expanded_g)
- # Average over the 'tower' dimension.
- grad = tf.concat(0, grads)
- grad = tf.reduce_mean(grad, 0)
- # Keep in mind that the Variables are redundant because they are shared
- # across towers. So .. we will just return the first tower's pointer to
- # the Variable.
- v = grad_and_vars[0][1]
- grad_and_var = (grad, v)
- average_grads.append(grad_and_var)
- return average_grads
- def train(dataset):
- """Train on dataset for a number of steps."""
- with tf.Graph().as_default(), tf.device('/cpu:0'):
- # Create a variable to count the number of train() calls. This equals the
- # number of batches processed * FLAGS.num_gpus.
- global_step = tf.get_variable(
- 'global_step', [],
- initializer=tf.constant_initializer(0), trainable=False)
- # Calculate the learning rate schedule.
- num_batches_per_epoch = (dataset.num_examples_per_epoch() /
- FLAGS.batch_size)
- decay_steps = int(num_batches_per_epoch * FLAGS.num_epochs_per_decay)
- # Decay the learning rate exponentially based on the number of steps.
- lr = tf.train.exponential_decay(FLAGS.initial_learning_rate,
- global_step,
- decay_steps,
- FLAGS.learning_rate_decay_factor,
- staircase=True)
- # Create an optimizer that performs gradient descent.
- opt = tf.train.RMSPropOptimizer(lr, RMSPROP_DECAY,
- momentum=RMSPROP_MOMENTUM,
- epsilon=RMSPROP_EPSILON)
- # Get images and labels for ImageNet and split the batch across GPUs.
- assert FLAGS.batch_size % FLAGS.num_gpus == 0, (
- 'Batch size must be divisible by number of GPUs')
- split_batch_size = int(FLAGS.batch_size / FLAGS.num_gpus)
- # Override the number of preprocessing threads to account for the increased
- # number of GPU towers.
- num_preprocess_threads = FLAGS.num_preprocess_threads * FLAGS.num_gpus
- images, labels = image_processing.distorted_inputs(
- dataset,
- num_preprocess_threads=num_preprocess_threads)
- input_summaries = copy.copy(tf.get_collection(tf.GraphKeys.SUMMARIES))
- # Number of classes in the Dataset label set plus 1.
- # Label 0 is reserved for an (unused) background class.
- num_classes = dataset.num_classes() + 1
-
- # Split the batch of images and labels for towers.
- images_splits = tf.split(0, FLAGS.num_gpus, images)
- labels_splits = tf.split(0, FLAGS.num_gpus, labels)
- # Calculate the gradients for each model tower.
- tower_grads = []
- for i in xrange(FLAGS.num_gpus):
- with tf.device('/gpu:%d' % i):
- with tf.name_scope('%s_%d' % (inception.TOWER_NAME, i)) as scope:
- # Force all Variables to reside on the CPU.
- with slim.arg_scope([slim.variables.variable], device='/cpu:0'):
- # Calculate the loss for one tower of the ImageNet model. This
- # function constructs the entire ImageNet model but shares the
- # variables across all towers.
- loss = _tower_loss(images_splits[i], labels_splits[i], num_classes,
- scope)
- # Reuse variables for the next tower.
- tf.get_variable_scope().reuse_variables()
- # Retain the summaries from the final tower.
- summaries = tf.get_collection(tf.GraphKeys.SUMMARIES, scope)
- # Retain the Batch Normalization updates operations only from the
- # final tower. Ideally, we should grab the updates from all towers
- # but these stats accumulate extremely fast so we can ignore the
- # other stats from the other towers without significant detriment.
- batchnorm_updates = tf.get_collection(slim.ops.UPDATE_OPS_COLLECTION,
- scope)
- # Calculate the gradients for the batch of data on this ImageNet
- # tower.
- grads = opt.compute_gradients(loss)
- # Keep track of the gradients across all towers.
- tower_grads.append(grads)
- # We must calculate the mean of each gradient. Note that this is the
- # synchronization point across all towers.
- grads = _average_gradients(tower_grads)
- # Add a summaries for the input processing and global_step.
- summaries.extend(input_summaries)
- # Add a summary to track the learning rate.
- summaries.append(tf.scalar_summary('learning_rate', lr))
- # Add histograms for gradients.
- for grad, var in grads:
- if grad is not None:
- summaries.append(
- tf.histogram_summary(var.op.name + '/gradients', grad))
- # Apply the gradients to adjust the shared variables.
- apply_gradient_op = opt.apply_gradients(grads, global_step=global_step)
- # Add histograms for trainable variables.
- for var in tf.trainable_variables():
- summaries.append(tf.histogram_summary(var.op.name, var))
- # Track the moving averages of all trainable variables.
- # Note that we maintain a "double-average" of the BatchNormalization
- # global statistics. This is more complicated then need be but we employ
- # this for backward-compatibility with our previous models.
- variable_averages = tf.train.ExponentialMovingAverage(
- inception.MOVING_AVERAGE_DECAY, global_step)
- # Another possiblility is to use tf.slim.get_variables().
- variables_to_average = (tf.trainable_variables() +
- tf.moving_average_variables())
- variables_averages_op = variable_averages.apply(variables_to_average)
- # Group all updates to into a single train op.
- batchnorm_updates_op = tf.group(*batchnorm_updates)
- train_op = tf.group(apply_gradient_op, variables_averages_op,
- batchnorm_updates_op)
- # Create a saver.
- saver = tf.train.Saver(tf.all_variables())
- # Build the summary operation from the last tower summaries.
- summary_op = tf.merge_summary(summaries)
- # Build an initialization operation to run below.
- init = tf.initialize_all_variables()
- # Start running operations on the Graph. allow_soft_placement must be set to
- # True to build towers on GPU, as some of the ops do not have GPU
- # implementations.
- sess = tf.Session(config=tf.ConfigProto(
- allow_soft_placement=True,
- log_device_placement=FLAGS.log_device_placement))
- sess.run(init)
- if FLAGS.pretrained_model_checkpoint_path:
- assert tf.gfile.Exists(FLAGS.pretrained_model_checkpoint_path)
- variables_to_restore = tf.get_collection(
- slim.variables.VARIABLES_TO_RESTORE)
- restorer = tf.train.Saver(variables_to_restore)
- restorer.restore(sess, FLAGS.pretrained_model_checkpoint_path)
- print('%s: Pre-trained model restored from %s' %
- (datetime.now(), FLAGS.pretrained_model_checkpoint_path))
- # Start the queue runners.
- tf.train.start_queue_runners(sess=sess)
- summary_writer = tf.train.SummaryWriter(
- FLAGS.train_dir,
- graph_def=sess.graph.as_graph_def(add_shapes=True))
- for step in xrange(FLAGS.max_steps):
- start_time = time.time()
- _, loss_value = sess.run([train_op, loss])
- duration = time.time() - start_time
- assert not np.isnan(loss_value), 'Model diverged with loss = NaN'
- if step % 10 == 0:
- examples_per_sec = FLAGS.batch_size / float(duration)
- format_str = ('%s: step %d, loss = %.2f (%.1f examples/sec; %.3f '
- 'sec/batch)')
- print(format_str % (datetime.now(), step, loss_value,
- examples_per_sec, duration))
- if step % 100 == 0:
- summary_str = sess.run(summary_op)
- summary_writer.add_summary(summary_str, step)
- # Save the model checkpoint periodically.
- if step % 5000 == 0 or (step + 1) == FLAGS.max_steps:
- checkpoint_path = os.path.join(FLAGS.train_dir, 'model.ckpt')
- saver.save(sess, checkpoint_path, global_step=step)
|