cifar10.py 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400
  1. # Copyright 2015 The TensorFlow Authors. All Rights Reserved.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ==============================================================================
  15. """Builds the CIFAR-10 network.
  16. Summary of available functions:
  17. # Compute input images and labels for training. If you would like to run
  18. # evaluations, use inputs() instead.
  19. inputs, labels = distorted_inputs()
  20. # Compute inference on the model inputs to make a prediction.
  21. predictions = inference(inputs)
  22. # Compute the total loss of the prediction with respect to the labels.
  23. loss = loss(predictions, labels)
  24. # Create a graph to run one step of training with respect to the loss.
  25. train_op = train(loss, global_step)
  26. """
  27. # pylint: disable=missing-docstring
  28. from __future__ import absolute_import
  29. from __future__ import division
  30. from __future__ import print_function
  31. import gzip
  32. import os
  33. import re
  34. import sys
  35. import tarfile
  36. from six.moves import urllib
  37. import tensorflow as tf
  38. from tensorflow.models.image.cifar10 import cifar10_input
  39. FLAGS = tf.app.flags.FLAGS
  40. # Basic model parameters.
  41. tf.app.flags.DEFINE_integer('batch_size', 128,
  42. """Number of images to process in a batch.""")
  43. tf.app.flags.DEFINE_string('data_dir', '/tmp/cifar10_data',
  44. """Path to the CIFAR-10 data directory.""")
  45. tf.app.flags.DEFINE_boolean('use_fp16', False,
  46. """Train the model using fp16.""")
  47. # Global constants describing the CIFAR-10 data set.
  48. IMAGE_SIZE = cifar10_input.IMAGE_SIZE
  49. NUM_CLASSES = cifar10_input.NUM_CLASSES
  50. NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN = cifar10_input.NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN
  51. NUM_EXAMPLES_PER_EPOCH_FOR_EVAL = cifar10_input.NUM_EXAMPLES_PER_EPOCH_FOR_EVAL
  52. # Constants describing the training process.
  53. MOVING_AVERAGE_DECAY = 0.9999 # The decay to use for the moving average.
  54. NUM_EPOCHS_PER_DECAY = 350.0 # Epochs after which learning rate decays.
  55. LEARNING_RATE_DECAY_FACTOR = 0.1 # Learning rate decay factor.
  56. INITIAL_LEARNING_RATE = 0.1 # Initial learning rate.
  57. # If a model is trained with multiple GPUs, prefix all Op names with tower_name
  58. # to differentiate the operations. Note that this prefix is removed from the
  59. # names of the summaries when visualizing a model.
  60. TOWER_NAME = 'tower'
  61. DATA_URL = 'http://www.cs.toronto.edu/~kriz/cifar-10-binary.tar.gz'
  62. def _activation_summary(x):
  63. """Helper to create summaries for activations.
  64. Creates a summary that provides a histogram of activations.
  65. Creates a summary that measures the sparsity of activations.
  66. Args:
  67. x: Tensor
  68. Returns:
  69. nothing
  70. """
  71. # Remove 'tower_[0-9]/' from the name in case this is a multi-GPU training
  72. # session. This helps the clarity of presentation on tensorboard.
  73. tensor_name = re.sub('%s_[0-9]*/' % TOWER_NAME, '', x.op.name)
  74. tf.contrib.deprecated.histogram_summary(tensor_name + '/activations', x)
  75. tf.contrib.deprecated.scalar_summary(tensor_name + '/sparsity',
  76. tf.nn.zero_fraction(x))
  77. def _variable_on_cpu(name, shape, initializer):
  78. """Helper to create a Variable stored on CPU memory.
  79. Args:
  80. name: name of the variable
  81. shape: list of ints
  82. initializer: initializer for Variable
  83. Returns:
  84. Variable Tensor
  85. """
  86. with tf.device('/cpu:0'):
  87. dtype = tf.float16 if FLAGS.use_fp16 else tf.float32
  88. var = tf.get_variable(name, shape, initializer=initializer, dtype=dtype)
  89. return var
  90. def _variable_with_weight_decay(name, shape, stddev, wd):
  91. """Helper to create an initialized Variable with weight decay.
  92. Note that the Variable is initialized with a truncated normal distribution.
  93. A weight decay is added only if one is specified.
  94. Args:
  95. name: name of the variable
  96. shape: list of ints
  97. stddev: standard deviation of a truncated Gaussian
  98. wd: add L2Loss weight decay multiplied by this float. If None, weight
  99. decay is not added for this Variable.
  100. Returns:
  101. Variable Tensor
  102. """
  103. dtype = tf.float16 if FLAGS.use_fp16 else tf.float32
  104. var = _variable_on_cpu(
  105. name,
  106. shape,
  107. tf.truncated_normal_initializer(stddev=stddev, dtype=dtype))
  108. if wd is not None:
  109. weight_decay = tf.mul(tf.nn.l2_loss(var), wd, name='weight_loss')
  110. tf.add_to_collection('losses', weight_decay)
  111. return var
  112. def distorted_inputs():
  113. """Construct distorted input for CIFAR training using the Reader ops.
  114. Returns:
  115. images: Images. 4D tensor of [batch_size, IMAGE_SIZE, IMAGE_SIZE, 3] size.
  116. labels: Labels. 1D tensor of [batch_size] size.
  117. Raises:
  118. ValueError: If no data_dir
  119. """
  120. if not FLAGS.data_dir:
  121. raise ValueError('Please supply a data_dir')
  122. data_dir = os.path.join(FLAGS.data_dir, 'cifar-10-batches-bin')
  123. images, labels = cifar10_input.distorted_inputs(data_dir=data_dir,
  124. batch_size=FLAGS.batch_size)
  125. if FLAGS.use_fp16:
  126. images = tf.cast(images, tf.float16)
  127. labels = tf.cast(labels, tf.float16)
  128. return images, labels
  129. def inputs(eval_data):
  130. """Construct input for CIFAR evaluation using the Reader ops.
  131. Args:
  132. eval_data: bool, indicating if one should use the train or eval data set.
  133. Returns:
  134. images: Images. 4D tensor of [batch_size, IMAGE_SIZE, IMAGE_SIZE, 3] size.
  135. labels: Labels. 1D tensor of [batch_size] size.
  136. Raises:
  137. ValueError: If no data_dir
  138. """
  139. if not FLAGS.data_dir:
  140. raise ValueError('Please supply a data_dir')
  141. data_dir = os.path.join(FLAGS.data_dir, 'cifar-10-batches-bin')
  142. images, labels = cifar10_input.inputs(eval_data=eval_data,
  143. data_dir=data_dir,
  144. batch_size=FLAGS.batch_size)
  145. if FLAGS.use_fp16:
  146. images = tf.cast(images, tf.float16)
  147. labels = tf.cast(labels, tf.float16)
  148. return images, labels
  149. def inference(images):
  150. """Build the CIFAR-10 model.
  151. Args:
  152. images: Images returned from distorted_inputs() or inputs().
  153. Returns:
  154. Logits.
  155. """
  156. # We instantiate all variables using tf.get_variable() instead of
  157. # tf.Variable() in order to share variables across multiple GPU training runs.
  158. # If we only ran this model on a single GPU, we could simplify this function
  159. # by replacing all instances of tf.get_variable() with tf.Variable().
  160. #
  161. # conv1
  162. with tf.variable_scope('conv1') as scope:
  163. kernel = _variable_with_weight_decay('weights',
  164. shape=[5, 5, 3, 64],
  165. stddev=5e-2,
  166. wd=0.0)
  167. conv = tf.nn.conv2d(images, kernel, [1, 1, 1, 1], padding='SAME')
  168. biases = _variable_on_cpu('biases', [64], tf.constant_initializer(0.0))
  169. pre_activation = tf.nn.bias_add(conv, biases)
  170. conv1 = tf.nn.relu(pre_activation, name=scope.name)
  171. _activation_summary(conv1)
  172. # pool1
  173. pool1 = tf.nn.max_pool(conv1, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1],
  174. padding='SAME', name='pool1')
  175. # norm1
  176. norm1 = tf.nn.lrn(pool1, 4, bias=1.0, alpha=0.001 / 9.0, beta=0.75,
  177. name='norm1')
  178. # conv2
  179. with tf.variable_scope('conv2') as scope:
  180. kernel = _variable_with_weight_decay('weights',
  181. shape=[5, 5, 64, 64],
  182. stddev=5e-2,
  183. wd=0.0)
  184. conv = tf.nn.conv2d(norm1, kernel, [1, 1, 1, 1], padding='SAME')
  185. biases = _variable_on_cpu('biases', [64], tf.constant_initializer(0.1))
  186. pre_activation = tf.nn.bias_add(conv, biases)
  187. conv2 = tf.nn.relu(pre_activation, name=scope.name)
  188. _activation_summary(conv2)
  189. # norm2
  190. norm2 = tf.nn.lrn(conv2, 4, bias=1.0, alpha=0.001 / 9.0, beta=0.75,
  191. name='norm2')
  192. # pool2
  193. pool2 = tf.nn.max_pool(norm2, ksize=[1, 3, 3, 1],
  194. strides=[1, 2, 2, 1], padding='SAME', name='pool2')
  195. # local3
  196. with tf.variable_scope('local3') as scope:
  197. # Move everything into depth so we can perform a single matrix multiply.
  198. reshape = tf.reshape(pool2, [FLAGS.batch_size, -1])
  199. dim = reshape.get_shape()[1].value
  200. weights = _variable_with_weight_decay('weights', shape=[dim, 384],
  201. stddev=0.04, wd=0.004)
  202. biases = _variable_on_cpu('biases', [384], tf.constant_initializer(0.1))
  203. local3 = tf.nn.relu(tf.matmul(reshape, weights) + biases, name=scope.name)
  204. _activation_summary(local3)
  205. # local4
  206. with tf.variable_scope('local4') as scope:
  207. weights = _variable_with_weight_decay('weights', shape=[384, 192],
  208. stddev=0.04, wd=0.004)
  209. biases = _variable_on_cpu('biases', [192], tf.constant_initializer(0.1))
  210. local4 = tf.nn.relu(tf.matmul(local3, weights) + biases, name=scope.name)
  211. _activation_summary(local4)
  212. # linear layer(WX + b),
  213. # We don't apply softmax here because
  214. # tf.nn.sparse_softmax_cross_entropy_with_logits accepts the unscaled logits
  215. # and performs the softmax internally for efficiency.
  216. with tf.variable_scope('softmax_linear') as scope:
  217. weights = _variable_with_weight_decay('weights', [192, NUM_CLASSES],
  218. stddev=1/192.0, wd=0.0)
  219. biases = _variable_on_cpu('biases', [NUM_CLASSES],
  220. tf.constant_initializer(0.0))
  221. softmax_linear = tf.add(tf.matmul(local4, weights), biases, name=scope.name)
  222. _activation_summary(softmax_linear)
  223. return softmax_linear
  224. def loss(logits, labels):
  225. """Add L2Loss to all the trainable variables.
  226. Add summary for "Loss" and "Loss/avg".
  227. Args:
  228. logits: Logits from inference().
  229. labels: Labels from distorted_inputs or inputs(). 1-D tensor
  230. of shape [batch_size]
  231. Returns:
  232. Loss tensor of type float.
  233. """
  234. # Calculate the average cross entropy loss across the batch.
  235. labels = tf.cast(labels, tf.int64)
  236. cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(
  237. logits, labels, name='cross_entropy_per_example')
  238. cross_entropy_mean = tf.reduce_mean(cross_entropy, name='cross_entropy')
  239. tf.add_to_collection('losses', cross_entropy_mean)
  240. # The total loss is defined as the cross entropy loss plus all of the weight
  241. # decay terms (L2 loss).
  242. return tf.add_n(tf.get_collection('losses'), name='total_loss')
  243. def _add_loss_summaries(total_loss):
  244. """Add summaries for losses in CIFAR-10 model.
  245. Generates moving average for all losses and associated summaries for
  246. visualizing the performance of the network.
  247. Args:
  248. total_loss: Total loss from loss().
  249. Returns:
  250. loss_averages_op: op for generating moving averages of losses.
  251. """
  252. # Compute the moving average of all individual losses and the total loss.
  253. loss_averages = tf.train.ExponentialMovingAverage(0.9, name='avg')
  254. losses = tf.get_collection('losses')
  255. loss_averages_op = loss_averages.apply(losses + [total_loss])
  256. # Attach a scalar summary to all individual losses and the total loss; do the
  257. # same for the averaged version of the losses.
  258. for l in losses + [total_loss]:
  259. # Name each loss as '(raw)' and name the moving average version of the loss
  260. # as the original loss name.
  261. tf.contrib.deprecated.scalar_summary(l.op.name + ' (raw)', l)
  262. tf.contrib.deprecated.scalar_summary(l.op.name, loss_averages.average(l))
  263. return loss_averages_op
  264. def train(total_loss, global_step):
  265. """Train CIFAR-10 model.
  266. Create an optimizer and apply to all trainable variables. Add moving
  267. average for all trainable variables.
  268. Args:
  269. total_loss: Total loss from loss().
  270. global_step: Integer Variable counting the number of training steps
  271. processed.
  272. Returns:
  273. train_op: op for training.
  274. """
  275. # Variables that affect learning rate.
  276. num_batches_per_epoch = NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN / FLAGS.batch_size
  277. decay_steps = int(num_batches_per_epoch * NUM_EPOCHS_PER_DECAY)
  278. # Decay the learning rate exponentially based on the number of steps.
  279. lr = tf.train.exponential_decay(INITIAL_LEARNING_RATE,
  280. global_step,
  281. decay_steps,
  282. LEARNING_RATE_DECAY_FACTOR,
  283. staircase=True)
  284. tf.contrib.deprecated.scalar_summary('learning_rate', lr)
  285. # Generate moving averages of all losses and associated summaries.
  286. loss_averages_op = _add_loss_summaries(total_loss)
  287. # Compute gradients.
  288. with tf.control_dependencies([loss_averages_op]):
  289. opt = tf.train.GradientDescentOptimizer(lr)
  290. grads = opt.compute_gradients(total_loss)
  291. # Apply gradients.
  292. apply_gradient_op = opt.apply_gradients(grads, global_step=global_step)
  293. # Add histograms for trainable variables.
  294. for var in tf.trainable_variables():
  295. tf.contrib.deprecated.histogram_summary(var.op.name, var)
  296. # Add histograms for gradients.
  297. for grad, var in grads:
  298. if grad is not None:
  299. tf.contrib.deprecated.histogram_summary(var.op.name + '/gradients', grad)
  300. # Track the moving averages of all trainable variables.
  301. variable_averages = tf.train.ExponentialMovingAverage(
  302. MOVING_AVERAGE_DECAY, global_step)
  303. variables_averages_op = variable_averages.apply(tf.trainable_variables())
  304. with tf.control_dependencies([apply_gradient_op, variables_averages_op]):
  305. train_op = tf.no_op(name='train')
  306. return train_op
  307. def maybe_download_and_extract():
  308. """Download and extract the tarball from Alex's website."""
  309. dest_directory = FLAGS.data_dir
  310. if not os.path.exists(dest_directory):
  311. os.makedirs(dest_directory)
  312. filename = DATA_URL.split('/')[-1]
  313. filepath = os.path.join(dest_directory, filename)
  314. if not os.path.exists(filepath):
  315. def _progress(count, block_size, total_size):
  316. sys.stdout.write('\r>> Downloading %s %.1f%%' % (filename,
  317. float(count * block_size) / float(total_size) * 100.0))
  318. sys.stdout.flush()
  319. filepath, _ = urllib.request.urlretrieve(DATA_URL, filepath, _progress)
  320. print()
  321. statinfo = os.stat(filepath)
  322. print('Successfully downloaded', filename, statinfo.st_size, 'bytes.')
  323. tarfile.open(filepath, 'r:gz').extractall(dest_directory)