123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184 |
- # Copyright 2016 The TensorFlow Authors All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ==============================================================================
- """Auxiliary functions for domain adaptation related losses.
- """
- import math
- import tensorflow as tf
- def create_summaries(end_points, prefix='', max_images=3, use_op_name=False):
- """Creates a tf summary per endpoint.
- If the endpoint is a 4 dimensional tensor it displays it as an image
- otherwise if it is a two dimensional one it creates a histogram summary.
- Args:
- end_points: a dictionary of name, tf tensor pairs.
- prefix: an optional string to prefix the summary with.
- max_images: the maximum number of images to display per summary.
- use_op_name: Use the op name as opposed to the shorter end_points key.
- """
- for layer_name in end_points:
- if use_op_name:
- name = end_points[layer_name].op.name
- else:
- name = layer_name
- if len(end_points[layer_name].get_shape().as_list()) == 4:
- # if it's an actual image do not attempt to reshape it
- if end_points[layer_name].get_shape().as_list()[-1] == 1 or end_points[
- layer_name].get_shape().as_list()[-1] == 3:
- visualization_image = end_points[layer_name]
- else:
- visualization_image = reshape_feature_maps(end_points[layer_name])
- tf.summary.image(
- '{}/{}'.format(prefix, name),
- visualization_image,
- max_outputs=max_images)
- elif len(end_points[layer_name].get_shape().as_list()) == 3:
- images = tf.expand_dims(end_points[layer_name], 3)
- tf.summary.image(
- '{}/{}'.format(prefix, name),
- images,
- max_outputs=max_images)
- elif len(end_points[layer_name].get_shape().as_list()) == 2:
- tf.summary.histogram('{}/{}'.format(prefix, name), end_points[layer_name])
- def reshape_feature_maps(features_tensor):
- """Reshape activations for tf.summary.image visualization.
- Arguments:
- features_tensor: a tensor of activations with a square number of feature
- maps, eg 4, 9, 16, etc.
- Returns:
- A composite image with all the feature maps that can be passed as an
- argument to tf.summary.image.
- """
- assert len(features_tensor.get_shape().as_list()) == 4
- num_filters = features_tensor.get_shape().as_list()[-1]
- assert num_filters > 0
- num_filters_sqrt = math.sqrt(num_filters)
- assert num_filters_sqrt.is_integer(
- ), 'Number of filters should be a square number but got {}'.format(
- num_filters)
- num_filters_sqrt = int(num_filters_sqrt)
- conv_summary = tf.unstack(features_tensor, axis=3)
- conv_one_row = tf.concat(conv_summary[0:num_filters_sqrt], 2)
- ind = 1
- conv_final = conv_one_row
- for ind in range(1, num_filters_sqrt):
- conv_one_row = tf.concat(conv_summary[
- ind * num_filters_sqrt + 0:ind * num_filters_sqrt + num_filters_sqrt],
- 2)
- conv_final = tf.concat(
- [tf.squeeze(conv_final), tf.squeeze(conv_one_row)], 1)
- conv_final = tf.expand_dims(conv_final, -1)
- return conv_final
- def accuracy(predictions, labels):
- """Calculates the classificaton accuracy.
- Args:
- predictions: the predicted values, a tensor whose size matches 'labels'.
- labels: the ground truth values, a tensor of any size.
- Returns:
- a tensor whose value on evaluation returns the total accuracy.
- """
- return tf.reduce_mean(tf.cast(tf.equal(predictions, labels), tf.float32))
- def compute_upsample_values(input_tensor, upsample_height, upsample_width):
- """Compute values for an upsampling op (ops.BatchCropAndResize).
- Args:
- input_tensor: image tensor with shape [batch, height, width, in_channels]
- upsample_height: integer
- upsample_width: integer
- Returns:
- grid_centers: tensor with shape [batch, 1]
- crop_sizes: tensor with shape [batch, 1]
- output_height: integer
- output_width: integer
- """
- batch, input_height, input_width, _ = input_tensor.shape
- height_half = input_height / 2.
- width_half = input_width / 2.
- grid_centers = tf.constant(batch * [[height_half, width_half]])
- crop_sizes = tf.constant(batch * [[input_height, input_width]])
- output_height = input_height * upsample_height
- output_width = input_width * upsample_width
- return grid_centers, tf.to_float(crop_sizes), output_height, output_width
- def compute_pairwise_distances(x, y):
- """Computes the squared pairwise Euclidean distances between x and y.
- Args:
- x: a tensor of shape [num_x_samples, num_features]
- y: a tensor of shape [num_y_samples, num_features]
- Returns:
- a distance matrix of dimensions [num_x_samples, num_y_samples].
- Raises:
- ValueError: if the inputs do no matched the specified dimensions.
- """
- if not len(x.get_shape()) == len(y.get_shape()) == 2:
- raise ValueError('Both inputs should be matrices.')
- if x.get_shape().as_list()[1] != y.get_shape().as_list()[1]:
- raise ValueError('The number of features should be the same.')
- norm = lambda x: tf.reduce_sum(tf.square(x), 1)
- # By making the `inner' dimensions of the two matrices equal to 1 using
- # broadcasting then we are essentially substracting every pair of rows
- # of x and y.
- # x will be num_samples x num_features x 1,
- # and y will be 1 x num_features x num_samples (after broadcasting).
- # After the substraction we will get a
- # num_x_samples x num_features x num_y_samples matrix.
- # The resulting dist will be of shape num_y_samples x num_x_samples.
- # and thus we need to transpose it again.
- return tf.transpose(norm(tf.expand_dims(x, 2) - tf.transpose(y)))
- def gaussian_kernel_matrix(x, y, sigmas):
- r"""Computes a Guassian Radial Basis Kernel between the samples of x and y.
- We create a sum of multiple gaussian kernels each having a width sigma_i.
- Args:
- x: a tensor of shape [num_samples, num_features]
- y: a tensor of shape [num_samples, num_features]
- sigmas: a tensor of floats which denote the widths of each of the
- gaussians in the kernel.
- Returns:
- A tensor of shape [num_samples{x}, num_samples{y}] with the RBF kernel.
- """
- beta = 1. / (2. * (tf.expand_dims(sigmas, 1)))
- dist = compute_pairwise_distances(x, y)
- s = tf.matmul(beta, tf.reshape(dist, (1, -1)))
- return tf.reshape(tf.reduce_sum(tf.exp(-s), 0), tf.shape(dist))
|