This repository contains machine learning models implemented in TensorFlow. The models are maintained by their respective authors. To propose a model for inclusion, please submit a pull request.

Christopher Shallue 8af6f0e283 Update the encoding instructions hace 8 años
.github dc7791d01c Create ISSUE_TEMPLATE.md (#124) hace 9 años
autoencoder 052e5e8b6e Converted the models repo to TF 1.0 using the upgrade script hace 8 años
compression 052e5e8b6e Converted the models repo to TF 1.0 using the upgrade script hace 8 años
differential_privacy 5d758ef0f5 Merge pull request #924 from h4ck3rm1k3/master hace 8 años
im2txt c22611891d Small clarification to documentation hace 8 años
inception 2e165569de Fix up the inception float comment hace 8 años
learning_to_remember_rare_events 3f74c7b419 Convert tf.op_scope to tf.name_scope, plus a few other 1.0 upgrade changes hace 8 años
lm_1b fdc4ce37a4 Fix README hace 9 años
namignizer 5d758ef0f5 Merge pull request #924 from h4ck3rm1k3/master hace 8 años
neural_gpu ee017e0dbf Fix two typos hace 8 años
neural_programmer 5d758ef0f5 Merge pull request #924 from h4ck3rm1k3/master hace 8 años
next_frame_prediction 052e5e8b6e Converted the models repo to TF 1.0 using the upgrade script hace 8 años
real_nvp 5c53534305 Manually fixed many occurrences of tf.split hace 8 años
resnet 64254ad355 Modify the README to reflect changes hace 8 años
skip_thoughts 8af6f0e283 Update the encoding instructions hace 8 años
slim 1e01a47493 Rename slim_walkthough.ipynb to slim_walkthrough.ipynb hace 8 años
street b41ff7f1bf Remove name arguments from tf.summary.scalar hace 8 años
swivel 3f74c7b419 Convert tf.op_scope to tf.name_scope, plus a few other 1.0 upgrade changes hace 8 años
syntaxnet e8464d33d3 Update the DRAGNN (#1191) hace 8 años
textsum 73ae53ac28 Replace old tf.nn modules with 1.0-compatible versions hace 8 años
transformer 052e5e8b6e Converted the models repo to TF 1.0 using the upgrade script hace 8 años
tutorials 51fcc99bc6 More clarifications hace 8 años
video_prediction 211ee00a3b Convert tf.GraphKeys.VARIABLES -> tf.GraphKeys.GLOBAL_VARIABLES hace 8 años
.gitignore 3e6caf5ff0 Add a .gitignore file. (#164) hace 9 años
.gitmodules 32ab5a58dd Adding SyntaxNet to tensorflow/models (#63) hace 9 años
AUTHORS 41c52d60fe Spatial Transformer model hace 9 años
CONTRIBUTING.md d84df16bc3 fixed contribution guidelines hace 9 años
LICENSE 7c41e653dc Update LICENSE hace 9 años
README.md 68609ca78a TF implementation of Skip Thoughts. hace 8 años
WORKSPACE ac0829fa2b Consolidate privacy/ and differential_privacy/. hace 9 años

README.md

TensorFlow Models

This repository contains machine learning models implemented in TensorFlow. The models are maintained by their respective authors.

To propose a model for inclusion please submit a pull request.

Models

  • autoencoder: various autoencoders.
  • compression: compressing and decompressing images using a pre-trained Residual GRU network.
  • differential_privacy: privacy-preserving student models from multiple teachers.
  • im2txt: image-to-text neural network for image captioning.
  • inception: deep convolutional networks for computer vision.
  • learning_to_remember_rare_events: a large-scale life-long memory module for use in deep learning.
  • lm_1b: language modeling on the one billion word benchmark.
  • namignizer: recognize and generate names.
  • neural_gpu: highly parallel neural computer.
  • neural_programmer: neural network augmented with logic and mathematic operations.
  • next_frame_prediction: probabilistic future frame synthesis via cross convolutional networks.
  • real_nvp: density estimation using real-valued non-volume preserving (real NVP) transformations.
  • resnet: deep and wide residual networks.
  • skip_thoughts: recurrent neural network sentence-to-vector encoder.
  • slim: image classification models in TF-Slim.
  • street: identify the name of a street (in France) from an image using a Deep RNN.
  • swivel: the Swivel algorithm for generating word embeddings.
  • syntaxnet: neural models of natural language syntax.
  • textsum: sequence-to-sequence with attention model for text summarization.
  • transformer: spatial transformer network, which allows the spatial manipulation of data within the network.
  • tutorials: models described in the TensorFlow tutorials.
  • video_prediction: predicting future video frames with neural advection.