| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374 |
- # Copyright 2016 The TensorFlow Authors All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ==============================================================================
- """Tests for grl_ops."""
- #from models.domain_adaptation.domain_separation import grl_op_grads # pylint: disable=unused-import
- #from models.domain_adaptation.domain_separation import grl_op_shapes # pylint: disable=unused-import
- import tensorflow as tf
- import grl_op_grads
- import grl_ops
- FLAGS = tf.app.flags.FLAGS
- class GRLOpsTest(tf.test.TestCase):
- def testGradientReversalOp(self):
- with tf.Graph().as_default():
- with self.test_session():
- # Test that in forward prop, gradient reversal op acts as the
- # identity operation.
- examples = tf.constant([5.0, 4.0, 3.0, 2.0, 1.0])
- output = grl_ops.gradient_reversal(examples)
- expected_output = examples
- self.assertAllEqual(output.eval(), expected_output.eval())
- # Test that shape inference works as expected.
- self.assertAllEqual(output.get_shape(), expected_output.get_shape())
- # Test that in backward prop, gradient reversal op multiplies
- # gradients by -1.
- examples = tf.constant([[1.0]])
- w = tf.get_variable(name='w', shape=[1, 1])
- b = tf.get_variable(name='b', shape=[1])
- init_op = tf.global_variables_initializer()
- init_op.run()
- features = tf.nn.xw_plus_b(examples, w, b)
- # Construct two outputs: features layer passes directly to output1, but
- # features layer passes through a gradient reversal layer before
- # reaching output2.
- output1 = features
- output2 = grl_ops.gradient_reversal(features)
- gold = tf.constant([1.0])
- loss1 = gold - output1
- loss2 = gold - output2
- opt = tf.train.GradientDescentOptimizer(learning_rate=0.01)
- grads_and_vars_1 = opt.compute_gradients(loss1,
- tf.trainable_variables())
- grads_and_vars_2 = opt.compute_gradients(loss2,
- tf.trainable_variables())
- self.assertAllEqual(len(grads_and_vars_1), len(grads_and_vars_2))
- for i in range(len(grads_and_vars_1)):
- g1 = grads_and_vars_1[i][0]
- g2 = grads_and_vars_2[i][0]
- # Verify that gradients of loss1 are the negative of gradients of
- # loss2.
- self.assertAllEqual(tf.negative(g1).eval(), g2.eval())
- if __name__ == '__main__':
- tf.test.main()
|