|
|
8 年 前 | |
|---|---|---|
| .. | ||
| README.md | 8 年 前 | |
| data_utils.py | 8 年 前 | |
| neural_gpu.py | 8 年 前 | |
| neural_gpu_trainer.py | 8 年 前 | |
| program_utils.py | 8 年 前 | |
| wmt_utils.py | 8 年 前 | |
Code for the Neural GPU model as described in [[http://arxiv.org/abs/1511.08228]].
Requirements:
The model can be trained on the following algorithmic tasks:
sort - Sort a symbol listkvsort - Sort symbol keys in dictionaryid - Return the same symbol listrev - Reverse a symbol listrev2 - Reverse a symbol dictionary by keyincr - Add one to a symbol valueadd - Long decimal additionleft - First symbol in listright - Last symbol in listleft-shift - Left shift a symbol listright-shift - Right shift a symbol listbmul - Long binary multiplicationmul - Long decimal multiplicationdup - Duplicate a symbol list with paddingbadd - Long binary additionqadd - Long quaternary additionsearch - Search for symbol key in dictionaryIt can also be trained on the WMT English-French translation task:
wmt - WMT English-French translation (data will be downloaded)The value range for symbols are defined by the vocab_size flag.
In particular, the values are in the range vocab_size - 1.
So if you set --vocab_size=16 (the default) then --problem=rev
will be reversing lists of 15 symbols, and --problem=id will be identity
on a list of up to 15 symbols.
To train the model on the binary multiplication task run:
python neural_gpu_trainer.py --problem=bmul
This trains the Extended Neural GPU, to train the original model run:
python neural_gpu_trainer.py --problem=bmul --beam_size=0
While training, interim / checkpoint model parameters will be
written to /tmp/neural_gpu/.
Once the amount of error gets down to what you're comfortable
with, hit Ctrl-C to stop the training process. The latest
model parameters will be in /tmp/neural_gpu/neural_gpu.ckpt-<step>
and used on any subsequent run.
To evaluate a trained model on how well it decodes run:
python neural_gpu_trainer.py --problem=bmul --mode=1
To interact with a model (experimental, see code) run:
python neural_gpu_trainer.py --problem=bmul --mode=2
Maintained by Lukasz Kaiser (lukaszkaiser)