This repository contains machine learning models implemented in TensorFlow. The models are maintained by their respective authors. To propose a model for inclusion, please submit a pull request.

Chris Shallue a83ef502d9 Merge pull request #718 from cshallue/master 9 lat temu
.github dc7791d01c Create ISSUE_TEMPLATE.md (#124) 9 lat temu
autoencoder a472ac9525 merged changes from #25 10 lat temu
compression b181b9885c Update README with results for comparison. 9 lat temu
differential_privacy a66b9e13c9 added semi-supervised training of the student using improved-gan (#655) 9 lat temu
im2txt 2c83637db7 Update GraphKeys.VARIABLES to GraphKeys.GLOBAL_VARIABLES 9 lat temu
inception bf51d43420 fix module object has no attribute NodeDef for tensorflow 0.11 (#572) 9 lat temu
lm_1b fdc4ce37a4 Fix README 9 lat temu
namignizer 76f567df5f add the namignizer model (#147) 9 lat temu
neural_gpu a803bf4171 Add to neural_gpu documentation. 9 lat temu
neural_programmer b905b41285 add a readme 9 lat temu
resnet d93ffd0b69 Allow softplacement for ResNet 9 lat temu
slim ea207d8a4d Updating README.md 9 lat temu
street f42469ef90 Updated download instructions to match reality 9 lat temu
swivel f3144eb061 Add sys.stdout.flush() 9 lat temu
syntaxnet 5eff490de4 Fix POS tagging score of Ling et al.(2005) 9 lat temu
textsum 5e875226bc Explicitly set state_is_tuple=False. 9 lat temu
transformer d816971032 Use tf.softmax_cross_entropy_with_logits to calculate loss (#181) 9 lat temu
video_prediction d67ea24901 video prediction model code 9 lat temu
.gitignore 3e6caf5ff0 Add a .gitignore file. (#164) 9 lat temu
.gitmodules 32ab5a58dd Adding SyntaxNet to tensorflow/models (#63) 9 lat temu
AUTHORS 41c52d60fe Spatial Transformer model 10 lat temu
CONTRIBUTING.md d84df16bc3 fixed contribution guidelines 10 lat temu
LICENSE 7c41e653dc Update LICENSE 10 lat temu
README.md 5860966afe Get back the README 9 lat temu
WORKSPACE ac0829fa2b Consolidate privacy/ and differential_privacy/. 9 lat temu

README.md

TensorFlow Models

This repository contains machine learning models implemented in TensorFlow. The models are maintained by their respective authors.

To propose a model for inclusion please submit a pull request.

Models

  • autoencoder -- various autoencoders
  • inception -- deep convolutional networks for computer vision
  • namignizer -- recognize and generate names
  • neural_gpu -- highly parallel neural computer
  • privacy -- privacy-preserving student models from multiple teachers
  • resnet -- deep and wide residual networks
  • slim -- image classification models in TF-Slim
  • swivel -- the Swivel algorithm for generating word embeddings
  • syntaxnet -- neural models of natural language syntax
  • textsum -- sequence-to-sequence with attention model for text summarization.
  • transformer -- spatial transformer network, which allows the spatial manipulation of data within the network
  • im2txt -- image-to-text neural network for image captioning.
  • neural_programmer -- neural network augmented with logic and mathematic operations.